Contact analogs of Gray's identity for $NC_{10}$-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 823-828.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider contact analogues of Gray identities for almost contact metric manifolds class $NC_{10}$. It is proved that every $NC_{10}$-manifold is a manifold of class $CR_3$. We obtain a local structure $NC_{10}$-manifolds class $CR_1$ and $CR_2$.
Keywords: a cosymplectic structure, exact cosymplectic manifold, Kähler manifold, Riemann–Christoffel tensor, identity Gray, $NC_{10}$-manifold.
@article{SEMR_2018_15_a48,
     author = {A. R. Rustanov and O. N. Kazakova and S. V. Kharitonova},
     title = {Contact analogs of {Gray's} identity for $NC_{10}$-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {823--828},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a48/}
}
TY  - JOUR
AU  - A. R. Rustanov
AU  - O. N. Kazakova
AU  - S. V. Kharitonova
TI  - Contact analogs of Gray's identity for $NC_{10}$-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 823
EP  - 828
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a48/
LA  - ru
ID  - SEMR_2018_15_a48
ER  - 
%0 Journal Article
%A A. R. Rustanov
%A O. N. Kazakova
%A S. V. Kharitonova
%T Contact analogs of Gray's identity for $NC_{10}$-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 823-828
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a48/
%G ru
%F SEMR_2018_15_a48
A. R. Rustanov; O. N. Kazakova; S. V. Kharitonova. Contact analogs of Gray's identity for $NC_{10}$-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 823-828. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a48/

[1] A. R. Rustanov, “Manifolds of class $NC_{10}$”, Prepodavatel XXI vek, 3 (2014), 209–218

[2] D. Chinea, C.Gonzalez, “Classification of almost contact metric structures”, Annali di Matematica pura ed applicata (4), 156 (1990), 15–36 | DOI | MR | Zbl

[3] A. R. Rustanov, “Curvature identities for almost contact metric manifolds of class $C_{10}$”, Prepodavatel XXI vek, 4 (2010), 199–207

[4] A. R. Rustanov, “The properties of isotropy of the curvature tensor of almost contact metric manifolds of class $C_{10}$”, Prepodavatel XXI vek, 2 (2014), 207–213

[5] V. F. Kirichenko, Differential-geometric structures on manifolds, MPSU, M., 2003

[6] V. F. Kirichenko, A. R. Rustanov,, “The geometry of quasi-Sasakian manifolds”, Sbornik Mathematics, 193:8 (2002), 71–100 | DOI | MR | Zbl

[7] V. F. Kirichenko, E. V. Kusova, “On geometry of weakly cosymplectic manifolds”, Fundamentalnaya i prikladnaya matematika, 16:2 (2010), 33–42 | MR