On geometry of QS-hypersurfaces of K\"ahlerian manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 815-822.

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost contact metric structures are induced on any oriented hypersurface of an almost Hermitian manifold. In this paper, we study the case when the almost Hermitian manifold is Kählerian and the almost contact structure on its hypersurface is quasi-Sasakian. Some theorems on geometry of quasi-Sasakian hypersurfaces of a Kählerian manifold are proved.
Keywords: almost contact metric structure, type number, Kählerian manifold.
Mots-clés : quasi-Sasakian structure, hypersurface
@article{SEMR_2018_15_a47,
     author = {L. V. Stepanova and M. B. Banaru and G. A. Banaru},
     title = {On geometry of {QS-hypersurfaces} of {K\"ahlerian} manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {815--822},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a47/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - M. B. Banaru
AU  - G. A. Banaru
TI  - On geometry of QS-hypersurfaces of K\"ahlerian manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 815
EP  - 822
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a47/
LA  - ru
ID  - SEMR_2018_15_a47
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A M. B. Banaru
%A G. A. Banaru
%T On geometry of QS-hypersurfaces of K\"ahlerian manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 815-822
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a47/
%G ru
%F SEMR_2018_15_a47
L. V. Stepanova; M. B. Banaru; G. A. Banaru. On geometry of QS-hypersurfaces of K\"ahlerian manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 815-822. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a47/

[1] M.B. Banaru, V.F. Kirichenko, “Almost contact metric structures on the hypersurface of almost Hermitian manifolds”, Journal of Mathematical Sciences (New York), 207:4 (2015), 513–537 | DOI | Zbl

[2] A. Gray, L.M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl., 123:4 (1980), 35–58 | DOI | MR | Zbl

[3] L.V. Stepanova, “Quasi-Sasakian structures on hypersurfaces of Hermitian manifolds”, Nauchnye Trudy MPGU «V.I. Lenin», 1995, 187–191 (in Russian)

[4] L.V. Stepanova, M.B. Banaru, “On hypersurfaces of quasi-Kählerian manifolds”, Analele Stiintifice ale Universitatii «Al. I. Cuza». Iaşi, 47:1 (2001), 65–70 | MR

[5] A. Abu-Saleem, G.A. Banaru, “On some contact metric structures on hypersurfaces in a Kählerian manifold”, Acta Universitatis Apulensis, 31 (2012), 179–189 | MR | Zbl

[6] M.B. Banaru, “On almost contact metric 1-hypersurfaces in Kählerian manifolds”, Siberian Mathematical Journal, 55:4 (2014), 585–588 | DOI | MR | Zbl

[7] M.B. Banaru, “On almost contact metric 2-hypersurfaces in Kählerian manifolds”, Bulletin of the Transilvania University of Braşov. Series III. Mathematics, Informatics, Physics, 9(58):1 (2016), 1–10 | MR | Zbl

[8] L.V. Stepanova, G.A. Banaru, M.B. Banaru, “On quasi-Sasakian hypersurfaces of Kähler manifolds”, Russian mathematics, 60:1 (2016), 73–75 | DOI | MR | Zbl

[9] V.F. Kirichenko, Differential-geometric structures on manifolds, Pechatnyi Dom, Odessa, 2013 (in Russian)

[10] V.F. Kirichenko, A.R. Rustanov, “Differential geometry of quasi-Sasakian manifolds”, Sbornik: Mathematics, 193:8 (2002), 1173–1201 | DOI | MR | Zbl

[11] A. Abu-Saleem, M.B. Banaru, “Some applications of Kirichenko tensors”, An. Univ. Oradea, Fasc. Mat., 17:2 (2010), 201–208 | MR | Zbl

[12] M.B. Banaru, “On the Gray–Hervella classes of AH-structures on six-dimensional submanifolds of Cayley algebra”, Annuaire de l’universite de Sofia «St. Kl. Ohridski». Math., 95 (2004), 125–131 | MR | Zbl

[13] J. Jost, Riemannian geometry and geometric analysis, Springer, Berlin–Heidelberg–New-York, 2003 | MR

[14] L.V. Stepanova, Contact geometry of hypersurfaces in quasi-Kählerian manifolds, PhD thesis, Moscow State Pedagogical University, 1995 (in Russian)

[15] D.E. Blair, “Contact manifolds in Riemannian geometry”, Lect. Notes Math., 509, 1976, 1–145 | DOI | MR

[16] M.B. Banaru, “On minimality of a Sasakian hypersurface in a $W_3$-manifold”, Saitama Mathematical Journal, 20 (2002), 1–7 | MR | Zbl