On asymptotics of distribution of the sojourn time on a half-axis of a random walk with heavy tails
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1813-1817.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study asymptotic behavior of the distribution of the sojourn time of a random walk over growing level. We assume here regular variation of the right tail distribution of summands and existence of the second moment. Some two-sided asymptotic bounds for the sojourn time distribution are established.
Keywords: random walk, sojourn time, asymptotic analysis.
@article{SEMR_2018_15_a42,
     author = {A. S. Tarasenko},
     title = {On asymptotics of distribution of the sojourn time on a half-axis of a random walk with heavy tails},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1813--1817},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a42/}
}
TY  - JOUR
AU  - A. S. Tarasenko
TI  - On asymptotics of distribution of the sojourn time on a half-axis of a random walk with heavy tails
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1813
EP  - 1817
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a42/
LA  - ru
ID  - SEMR_2018_15_a42
ER  - 
%0 Journal Article
%A A. S. Tarasenko
%T On asymptotics of distribution of the sojourn time on a half-axis of a random walk with heavy tails
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1813-1817
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a42/
%G ru
%F SEMR_2018_15_a42
A. S. Tarasenko. On asymptotics of distribution of the sojourn time on a half-axis of a random walk with heavy tails. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1813-1817. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a42/

[1] I. S. Borisov, E. I. Schaefer, “Asymptotic of mean sojourn time of trajectory of random walk above growing nonlinear boundary”, Sib. Zhurnal Chist. i Priklad. Matem., 17:4 (2017), 18–27 | MR

[2] A. A. Borovkov, K. A. Borovkov, Asymptotical analysis of random walks, v. 1, Slowly varying distributions of jumps, Fizmatlit, M., 2008, 652 pp. | MR | Zbl

[3] Proc. Steklov Inst. Math., 195 (1995), 1 | MR

[4] V. I. Lotov, “Asymptotic expansions for the distribution of the sojourn time of a random walk on a halfxis”, Proceedings of the Steklov Institute of Mathematics, 282 (2013), 146–156 | DOI | MR | Zbl

[5] V. I. Lotov, A. S. Tarasenko, “On the asymptotics of the mean sojourn time of a random walk on a semi-axis”, Izvestiya: Mathematics, 79:3 (2015), 449–466 | DOI | MR | Zbl

[6] Spitzer F., Principles of Random Walks, 2nd ed., Springer-Verlag, New York, 1976 | MR | Zbl

[7] A. V. Skorokhod, N. P. Slobodenyuk, Limit Theorems for Random Walks, Naukova Dumka, Kiev, 1970 (in Russian) | MR | Zbl

[8] A. S. Tarasenko, “Inequalities for the sojourn time of random walk above a certain boundary”, Sib. Elektron. Mat. Izv., 13 (2016), 434–451 | MR | Zbl