@article{SEMR_2018_15_a37,
author = {A. A. Mogulskii and E. I. Prokopenko},
title = {Integro-local theorems for multidimensional compound renewal processes, when {Cramer's} condition {holds.~III}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {528--553},
year = {2018},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/}
}
TY - JOUR AU - A. A. Mogulskii AU - E. I. Prokopenko TI - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 528 EP - 553 VL - 15 UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/ LA - ru ID - SEMR_2018_15_a37 ER -
%0 Journal Article %A A. A. Mogulskii %A E. I. Prokopenko %T Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 528-553 %V 15 %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/ %G ru %F SEMR_2018_15_a37
A. A. Mogulskii; E. I. Prokopenko. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 528-553. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/
[1] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition I”, Siberian Mathematical Journal, 59:3 (2018), 491–514
[2] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition II”, Siberian Mathematical Journal, 59:4 (2018), 731–750
[3] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502
[4] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II”, Siberian Electronic Mathematical Reports, 15 (2018), 503–527
[5] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. IV”, Siberian Electronic Mathematical Reports (to appear)