Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a37, author = {A. A. Mogulskii and E. I. Prokopenko}, title = {Integro-local theorems for multidimensional compound renewal processes, when {Cramer's} condition {holds.~III}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {528--553}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/} }
TY - JOUR AU - A. A. Mogulskii AU - E. I. Prokopenko TI - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~III JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 528 EP - 553 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/ LA - ru ID - SEMR_2018_15_a37 ER -
%0 Journal Article %A A. A. Mogulskii %A E. I. Prokopenko %T Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~III %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 528-553 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/ %G ru %F SEMR_2018_15_a37
A. A. Mogulskii; E. I. Prokopenko. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~III. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 528-553. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a37/
[1] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition I”, Siberian Mathematical Journal, 59:3 (2018), 491–514
[2] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition II”, Siberian Mathematical Journal, 59:4 (2018), 731–750
[3] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502
[4] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II”, Siberian Electronic Mathematical Reports, 15 (2018), 503–527
[5] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. IV”, Siberian Electronic Mathematical Reports (to appear)