On groups saturated with dihedral groups and linear groups of degree~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 74-85

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper establishes the structure of periodic groups and Shunkov groups saturated with groups consisting of the groups $\mathfrak{M}$ consisting of the groups $ L_2 (q) $, where $ q\equiv 3,5\pmod{8} $ and dihedral groups with Sylow $2$-subgroup of order $2$. It is proved that a periodic group saturated with groups from $ \mathfrak{M}$ is either isomorphic to a prime Group $ L_2 (Q) $ for some locally-finite field $ Q $, or is isomorphic to a locally dihedral group with Sylow $2$-subgroup of order $2$. Also, the existence of the periodic part of the Shunkov group saturated with groups from the set $ \mathfrak{M} $ is proved, and the structure of this periodic part is established.
Keywords: group saturated with a set of groups.
@article{SEMR_2018_15_a3,
     author = {A. A. Shlepkin},
     title = {On groups saturated with dihedral groups and linear groups of degree~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - On groups saturated with dihedral groups and linear groups of degree~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 74
EP  - 85
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/
LA  - ru
ID  - SEMR_2018_15_a3
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T On groups saturated with dihedral groups and linear groups of degree~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 74-85
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/
%G ru
%F SEMR_2018_15_a3
A. A. Shlepkin. On groups saturated with dihedral groups and linear groups of degree~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 74-85. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/