On groups saturated with dihedral groups and linear groups of degree~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 74-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper establishes the structure of periodic groups and Shunkov groups saturated with groups consisting of the groups $\mathfrak{M}$ consisting of the groups $ L_2 (q) $, where $ q\equiv 3,5\pmod{8} $ and dihedral groups with Sylow $2$-subgroup of order $2$. It is proved that a periodic group saturated with groups from $ \mathfrak{M}$ is either isomorphic to a prime Group $ L_2 (Q) $ for some locally-finite field $ Q $, or is isomorphic to a locally dihedral group with Sylow $2$-subgroup of order $2$. Also, the existence of the periodic part of the Shunkov group saturated with groups from the set $ \mathfrak{M} $ is proved, and the structure of this periodic part is established.
Keywords: group saturated with a set of groups.
@article{SEMR_2018_15_a3,
     author = {A. A. Shlepkin},
     title = {On groups saturated with dihedral groups and linear groups of degree~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - On groups saturated with dihedral groups and linear groups of degree~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 74
EP  - 85
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/
LA  - ru
ID  - SEMR_2018_15_a3
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T On groups saturated with dihedral groups and linear groups of degree~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 74-85
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/
%G ru
%F SEMR_2018_15_a3
A. A. Shlepkin. On groups saturated with dihedral groups and linear groups of degree~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 74-85. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a3/

[1] A.P. Dicman, “O centre $p$-grupp”, Trudy seminara po teorii grupp, 1938, 30–34

[2] M.I. Kargapolov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[3] Kourovskaya tetrad', Nereshennye voprosy teorii grupp, 16 izdanie, IM SO RAN, Novosibirsk, 2006

[4] A.A. Kuznetsov, K.A. Filippov, “Gruppy, nasyshchennye zadannym mnozhestvom grupp”, Siberian Eltctronic Mathematical Repots, 8 (2011), 230–246 | MR | Zbl

[5] A.G. Rubashkin, Gruppy, nasyshchennye zadannymi mnozhestvami konechnyh grupp, Dissertaciya kand. fiz. -mat. nauk, Krasnoyarsk, 2005

[6] A.G. Rubashkin, K.A. Filippov, “O periodicheskih gruppah, nasyshchennyh gruppami $L_2(p^n)$”, Siberian Mathematical Journal, 46:6 (2005), 1388–1392 | MR | Zbl

[7] K.A. Filippov, “O periodicheskoj chasti gruppy Shunkova, nasyshchennoj $L_2(p^n)$”, Vestnik SibGAU, 1 (2012), 611–617

[8] K.A. Filippov, “O periodicheskih gruppah, nasyshchennyh konechnymi prostymi gruppami”, Siberian Mathematical Journal, 53:2 (2012), 430–438 | MR | Zbl

[9] A.N. Ostylovskij, V.P. Shunkov, “O lokal'noj konechnosti odnogo klassa grupp s usloviem minimal'nosti”, Issledovaniya po teorii grupp, Krasnoyarsk, 1975, 32–48 | MR

[10] V.I. Senashov, V.P. Shunkov, Gruppy s usloviyami konechnosti, Izd-vo SO RAN, Novosibirsk, 2001 | MR

[11] A.I. Sozutov, N.M. Suchkov, N.G. Suchkova, Beskonechnye gruppy s involyuciyami, Izd-vo SFU, Krasnoyarsk, 2011

[12] A.A. Shlepkin, “O periodicheskih gruppah, nasyshchennyh gruppami diehdra i $A_5$”, Izvestiya Irkutskogo universiteta, 20 (2017), 96–108 | Zbl

[13] A.K. Shlepkin, “O sopryazhenno biprimitivno konechnyh gruppah s usloviem primarnoj minimal'nosti”, Algebra i Logika, 22:2 (1983), 226–231 | MR | Zbl

[14] A.K. Shlepkin, “Sopryazhenno biprimitivno konechnye gruppy, soderzhashchie konechnye nerazreshimye podgruppy”, Tret'ya mezhdunar. konf. po algebre, Sb. tez., Krasnoyarsk, 1993

[15] A.K. Shlepkin, Gruppy Shunkova s dopolnitel'nymi ogranicheniyami, Dissertaciya dok. fiz.-mat. nauk, Krasnoyarsk, 1999

[16] A.K. Shlepkin, A.G. Rubashkin, “Ob odnom klasse periodicheskih grupp”, Algebra i Logika, 44:1 (2005), 114–125 | MR | Zbl

[17] V.P. Shunkov, “O periodicheskih gruppah s pochti regulyarnoj involyuciej”, Algebra i Logika, 11:4 (1972), 470–494 | MR

[18] A.A. Cherep, “Ob ehlementah konechnogo poryadka v biprimitivno konechnyh gruppah”, Algebra i Logika, 26:4 (1987), 518–521 | MR

[19] Amberg B., “Periodic groups saturated by dihedral subgroups”, Book of abstracts of the international algebraic conference dedicated to 70-th birthday of Anatoly Yakovlev, eds. B. Amberg, L. Kazarin, Saint-Petersburg, 2010, 79–80

[20] John N. Bray, Derek F. Holt, Colva M. Roney-Dougal, The Maximal Subgroups of the Low -Dimensional Finite Classical groups, Cambridge university press, 2013 | MR | Zbl

[21] Carter R. W., Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl