Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1048-1064
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we describe defining relations of $s$-generated nilpotent algebra $R$ over arbitrary field with condition $\dim R^{N}/R^{N+1} = 2$ for some natural number $N \geq 3$. It is proved that such algebra $R$ over a field of characteristic not two satisfies the standard identity of degree $N+2$ if $s\geq N$, or the standard identity of smaller degree than $N$ if $s < N$.
Keywords:
defining relations, identities, nilpotent algebra.
@article{SEMR_2018_15_a25,
author = {E. P. Petrov},
title = {Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1048--1064},
year = {2018},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/}
}
TY - JOUR
AU - E. P. Petrov
TI - Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2018
SP - 1048
EP - 1064
VL - 15
UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/
LA - ru
ID - SEMR_2018_15_a25
ER -
%0 Journal Article
%A E. P. Petrov
%T Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1048-1064
%V 15
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/
%G ru
%F SEMR_2018_15_a25
E. P. Petrov. Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1048-1064. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/
[1] E.P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–-1066 | MR | Zbl
[2] E.P. Petrov, “Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 14 (2017), 1153–-1187 | MR | Zbl
[3] E.P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | DOI | MR | Zbl
[4] L. H. Rowen, Polynomial identities in ring theory, Academic Press, Inc., New York–London, 1980 | MR | Zbl