Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a25, author = {E. P. Petrov}, title = {Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1048--1064}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/} }
TY - JOUR AU - E. P. Petrov TI - Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1048 EP - 1064 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/ LA - ru ID - SEMR_2018_15_a25 ER -
%0 Journal Article %A E. P. Petrov %T Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1048-1064 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/ %G ru %F SEMR_2018_15_a25
E. P. Petrov. Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $\dim R^{N}/R^{N+1} = 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1048-1064. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a25/
[1] E.P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–-1066 | MR | Zbl
[2] E.P. Petrov, “Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 14 (2017), 1153–-1187 | MR | Zbl
[3] E.P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | DOI | MR | Zbl
[4] L. H. Rowen, Polynomial identities in ring theory, Academic Press, Inc., New York–London, 1980 | MR | Zbl