Many-valued multi-modal logics, satisfiability problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 829-838.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates many-valuated multi-modal logics. The suggested semantics consists of relational Kripke–Hintikka models which have various accessibility relations and distinct valuations for propositional statements (letters). So we study a multi-agent approach when each agent has its own accessibility relation and also its own valuation for propositional letters. We suggest the rules for computation of truth values of formulas, illustrate our approach, and study the satisfiability problem. Using a modification of the filtration technique, we obtain a solution for satisfiability problem in basic but most important wide classes of multi-valued multi-modal models. We comment on possible applications and describe open problems.
Keywords: many-valued logic, multi-agent logic, multi-modal logic, computability, satisfiability, decidability, deciding algorithms.
@article{SEMR_2018_15_a23,
     author = {M. A. Moor and V. V. Rybakov},
     title = {Many-valued multi-modal logics, satisfiability problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {829--838},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a23/}
}
TY  - JOUR
AU  - M. A. Moor
AU  - V. V. Rybakov
TI  - Many-valued multi-modal logics, satisfiability problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 829
EP  - 838
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a23/
LA  - en
ID  - SEMR_2018_15_a23
ER  - 
%0 Journal Article
%A M. A. Moor
%A V. V. Rybakov
%T Many-valued multi-modal logics, satisfiability problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 829-838
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a23/
%G en
%F SEMR_2018_15_a23
M. A. Moor; V. V. Rybakov. Many-valued multi-modal logics, satisfiability problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 829-838. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a23/

[1] F. Baader, M. Bienvenu, C. Lutz, F. Wolter, “Query and Predicate Emptiness in Ontology-Based Data Access”, J. Artif. Intell. Res. (JAIR), 56 (2016), 1–59 | DOI | MR | Zbl

[2] F. Belardinelli, A. Lomuscio, “Interactions between Knowledge and Time in a First–Order Logic for Multi–Agent Systems: Completeness Results”, Journal of Artificial Intelligence Research, 45 (2012), 1–45 | DOI | MR | Zbl

[3] P. Balbiani, D. Vakarelov, “A Modal Logic for Indiscernibility and Complementarity in Information Systems”, Fundam. Inform., 50:3–4 (2002), 243–263 | MR | Zbl

[4] G. Bruns, P. Godefroid, “Model Checking with Multi–valued Logics”, Automata, Languages and Programming, Lecture Notes in Computer Science, 3142, 2004, 281–293 | DOI | MR | Zbl

[5] M. Fitting, Many–Valued Modal Logics, preprint, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004 | MR

[6] M. Fitting, Many–Valued Modal Logics II, preprint, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004 | MR

[7] D. M. Gabbay, D. H. J. De Jongh, “A Sequence of Decidable Finitely Axiomatizable Intermediate Logics with the Disjunction Property”, J. Symbolic Logic, 39 (1974), 67–78 | DOI | MR | Zbl

[8] D.M. Gabbay, I.M. Hodkinson, M. A. Reynolds, Temporal Logic: – Mathematical Foundations and Computational Aspects, v. 1, Clarendon Press, Oxford, 1994 | MR

[9] D.M. Gabbay, I.M. Hodkinson, “An axiomatisation of the temporal logic with Until and Since over the real numbers”, Journal of Logic and Computation, 1 (1990), 229–260 | DOI | MR

[10] D.M. Gabbay, I.M. Hodkinson, “Temporal Logic in Context of Databases”, Logic and Reality, Essays on the legacy of Arthur Prior, ed. J. Copeland, Oxford University Press, 1995 | MR

[11] D.M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-dimensional modal logics: theory and applications, North-Holland Publishing Co., Amsterdam, 2003 | MR

[12] A. Lomuscio, J. Michaliszyn, “An Epistemic Halpern–Shoham Logic”, Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 13), AAAI Press, Beijing, China, 2013, 1010–1016

[13] B. Konev, C. Lutz, D. Walther, F. Wolter, “Model–theoretic inseparability and modularity of description logic ontologies”, Artificial Intelligence, 203 (2013), 66–103 | DOI | MR | Zbl

[14] D. McLean, V. Rybakov, “Multi–Agent Temporary Logic $TS4^ U_ {K_n}$ Based at Non–linear Time and Imitating Uncertainty via Agents’ Interaction”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2013, 375–384 | DOI | MR

[15] V.V. Rybakov, “Refined common knowledge logics or logics of common information”, Archive for mathematical Logic, 42:2 (2003), 179–200 | DOI | MR | Zbl

[16] V.V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. of Symbolic Logic, 70:4 (2005), 1137–1149 | DOI | MR | Zbl

[17] V.V. Rybakov, “Logic of knowledge and discovery via interacting agents. Decision algorithm for true and satisfiable statements”, Information Sciences, 179:11 (2009), 1608–1614 | DOI | MR | Zbl

[18] V.V. Rybakov, “Linear Temporal Logic $LTL_{K_n}$ extended by Multi–Agent Logic $K_n$ with Interacting Agents”, Journal of logic and Computation, 19:6 (2009), 989–1017 | DOI | MR | Zbl

[19] V. Rybakov, S. Babenyshev, “Multi–agent logic with distances based on linear temporal frames”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2010, 337–344

[20] V.V. Rybakov, “Chance discovery and unification in linear modal logic”, Knowledge–Based and Intelligent Information and Engineering Systems, KES 2011, Lecture Notes in Computer Science, 6882, 2011, 478–485 | DOI

[21] V.V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45 | DOI | MR | Zbl

[22] Rybakov V. V., “Logical Analysis for Chance Discovery in Multi-Agents' Environment”, Knowledge–Based and Intelligent Information and Engineering Systems, KES 2012, Conference Proceedings, Springer, 1593–1601

[23] Rybakov Vladimir V., “Non–transitive linear temporal logic and logical knowledge operations”, J. of Logic Computation, 26:3 (2016), 945–958 (First published online: April 20, 2015) | DOI | MR | Zbl

[24] D. Vakarelov, “A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak's Information Systems”, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, 12–22 | Zbl

[25] M. Wooldridge, A. Lomuscio, “Multi–Agent VSK Logic”, Proceedings of the Seventh European Workshop on Logics in Artificial Intelligence, JELIAI-2000, Lecture Notes in Computer Science, 1919, 2000, 300–312 | DOI | MR | Zbl

[26] M. Wooldridge, “An Automata–theoretic approach to multiagent planning”, Proceedings of the First European Workshop on Multiagent Systems, EUMAS 2003 (December 2003), Oxford University

[27] M. Wooldridge, M.-P. Huget, M. Fisher, S. Parsons, “Model Checking Multi-Agent Systems: The MABLE Language and Its Applications”, International Journal on Artificial Intelligence Tools, 15:2 (2006), 195–225 | DOI | MR

[28] F. Wolter, “Automata for Ontologies”, Language and Automata, Theory and Applications, Lecture Notes in Computer Science, 9628, 2016, 57–60 | DOI | MR