Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a23, author = {M. A. Moor and V. V. Rybakov}, title = {Many-valued multi-modal logics, satisfiability problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {829--838}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a23/} }
M. A. Moor; V. V. Rybakov. Many-valued multi-modal logics, satisfiability problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 829-838. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a23/
[1] F. Baader, M. Bienvenu, C. Lutz, F. Wolter, “Query and Predicate Emptiness in Ontology-Based Data Access”, J. Artif. Intell. Res. (JAIR), 56 (2016), 1–59 | DOI | MR | Zbl
[2] F. Belardinelli, A. Lomuscio, “Interactions between Knowledge and Time in a First–Order Logic for Multi–Agent Systems: Completeness Results”, Journal of Artificial Intelligence Research, 45 (2012), 1–45 | DOI | MR | Zbl
[3] P. Balbiani, D. Vakarelov, “A Modal Logic for Indiscernibility and Complementarity in Information Systems”, Fundam. Inform., 50:3–4 (2002), 243–263 | MR | Zbl
[4] G. Bruns, P. Godefroid, “Model Checking with Multi–valued Logics”, Automata, Languages and Programming, Lecture Notes in Computer Science, 3142, 2004, 281–293 | DOI | MR | Zbl
[5] M. Fitting, Many–Valued Modal Logics, preprint, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004 | MR
[6] M. Fitting, Many–Valued Modal Logics II, preprint, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004 | MR
[7] D. M. Gabbay, D. H. J. De Jongh, “A Sequence of Decidable Finitely Axiomatizable Intermediate Logics with the Disjunction Property”, J. Symbolic Logic, 39 (1974), 67–78 | DOI | MR | Zbl
[8] D.M. Gabbay, I.M. Hodkinson, M. A. Reynolds, Temporal Logic: – Mathematical Foundations and Computational Aspects, v. 1, Clarendon Press, Oxford, 1994 | MR
[9] D.M. Gabbay, I.M. Hodkinson, “An axiomatisation of the temporal logic with Until and Since over the real numbers”, Journal of Logic and Computation, 1 (1990), 229–260 | DOI | MR
[10] D.M. Gabbay, I.M. Hodkinson, “Temporal Logic in Context of Databases”, Logic and Reality, Essays on the legacy of Arthur Prior, ed. J. Copeland, Oxford University Press, 1995 | MR
[11] D.M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-dimensional modal logics: theory and applications, North-Holland Publishing Co., Amsterdam, 2003 | MR
[12] A. Lomuscio, J. Michaliszyn, “An Epistemic Halpern–Shoham Logic”, Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 13), AAAI Press, Beijing, China, 2013, 1010–1016
[13] B. Konev, C. Lutz, D. Walther, F. Wolter, “Model–theoretic inseparability and modularity of description logic ontologies”, Artificial Intelligence, 203 (2013), 66–103 | DOI | MR | Zbl
[14] D. McLean, V. Rybakov, “Multi–Agent Temporary Logic $TS4^ U_ {K_n}$ Based at Non–linear Time and Imitating Uncertainty via Agents’ Interaction”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2013, 375–384 | DOI | MR
[15] V.V. Rybakov, “Refined common knowledge logics or logics of common information”, Archive for mathematical Logic, 42:2 (2003), 179–200 | DOI | MR | Zbl
[16] V.V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. of Symbolic Logic, 70:4 (2005), 1137–1149 | DOI | MR | Zbl
[17] V.V. Rybakov, “Logic of knowledge and discovery via interacting agents. Decision algorithm for true and satisfiable statements”, Information Sciences, 179:11 (2009), 1608–1614 | DOI | MR | Zbl
[18] V.V. Rybakov, “Linear Temporal Logic $LTL_{K_n}$ extended by Multi–Agent Logic $K_n$ with Interacting Agents”, Journal of logic and Computation, 19:6 (2009), 989–1017 | DOI | MR | Zbl
[19] V. Rybakov, S. Babenyshev, “Multi–agent logic with distances based on linear temporal frames”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2010, 337–344
[20] V.V. Rybakov, “Chance discovery and unification in linear modal logic”, Knowledge–Based and Intelligent Information and Engineering Systems, KES 2011, Lecture Notes in Computer Science, 6882, 2011, 478–485 | DOI
[21] V.V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45 | DOI | MR | Zbl
[22] Rybakov V. V., “Logical Analysis for Chance Discovery in Multi-Agents' Environment”, Knowledge–Based and Intelligent Information and Engineering Systems, KES 2012, Conference Proceedings, Springer, 1593–1601
[23] Rybakov Vladimir V., “Non–transitive linear temporal logic and logical knowledge operations”, J. of Logic Computation, 26:3 (2016), 945–958 (First published online: April 20, 2015) | DOI | MR | Zbl
[24] D. Vakarelov, “A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak's Information Systems”, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, 12–22 | Zbl
[25] M. Wooldridge, A. Lomuscio, “Multi–Agent VSK Logic”, Proceedings of the Seventh European Workshop on Logics in Artificial Intelligence, JELIAI-2000, Lecture Notes in Computer Science, 1919, 2000, 300–312 | DOI | MR | Zbl
[26] M. Wooldridge, “An Automata–theoretic approach to multiagent planning”, Proceedings of the First European Workshop on Multiagent Systems, EUMAS 2003 (December 2003), Oxford University
[27] M. Wooldridge, M.-P. Huget, M. Fisher, S. Parsons, “Model Checking Multi-Agent Systems: The MABLE Language and Its Applications”, International Journal on Artificial Intelligence Tools, 15:2 (2006), 195–225 | DOI | MR
[28] F. Wolter, “Automata for Ontologies”, Language and Automata, Theory and Applications, Lecture Notes in Computer Science, 9628, 2016, 57–60 | DOI | MR