On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1865-1877

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is considered the problem of regularization of the Cauchy problem for matrix factorisations of the Helmholtz equation in an unbounded planar domain. Using the Carleman matrix found an explicitly regularized solution of the Cauchy problem for matrix factorizations of the Helmholtz equation in two-dimensional unbounded domain.
Keywords: the Cauchy problem, regularization, factorization, regular solution, fundamental solution.
@article{SEMR_2018_15_a147,
     author = {D. A. Juraev},
     title = {On the {Cauchy} problem for matrix factorizations of the {Helmholtz} equation in an unbounded domain in ${\mathbb R}^{2}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1865--1877},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/}
}
TY  - JOUR
AU  - D. A. Juraev
TI  - On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1865
EP  - 1877
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/
LA  - ru
ID  - SEMR_2018_15_a147
ER  - 
%0 Journal Article
%A D. A. Juraev
%T On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1865-1877
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/
%G ru
%F SEMR_2018_15_a147
D. A. Juraev. On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1865-1877. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/