On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1865-1877.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is considered the problem of regularization of the Cauchy problem for matrix factorisations of the Helmholtz equation in an unbounded planar domain. Using the Carleman matrix found an explicitly regularized solution of the Cauchy problem for matrix factorizations of the Helmholtz equation in two-dimensional unbounded domain.
Keywords: the Cauchy problem, regularization, factorization, regular solution, fundamental solution.
@article{SEMR_2018_15_a147,
     author = {D. A. Juraev},
     title = {On the {Cauchy} problem for matrix factorizations of the {Helmholtz} equation in an unbounded domain in ${\mathbb R}^{2}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1865--1877},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/}
}
TY  - JOUR
AU  - D. A. Juraev
TI  - On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1865
EP  - 1877
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/
LA  - ru
ID  - SEMR_2018_15_a147
ER  - 
%0 Journal Article
%A D. A. Juraev
%T On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1865-1877
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/
%G ru
%F SEMR_2018_15_a147
D. A. Juraev. On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in ${\mathbb R}^{2}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1865-1877. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a147/

[1] N. N. Tarkhanov, “Ob integralnom predstavlenii resheniy sistem lineynykh differensialnyx uravneniy 1-go poryadka v chastnykh proizvodnykh i nekotoryx yego prilojeniyakh”, Nekotorye voprosy mnogomernogo kompleksnogo analiza, Institut fiziki AN SSSR, Krasnoyarsk, 1980, 147–160 | MR

[2] N. N. Tarkhanov, “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl

[3] N. N. Tarkhanov, The Cauchy problem for solutions of elliptic equations, Mathematical topics, 7, Akad. Verl., Berlin, 1995 | MR | Zbl

[4] Carleman T., Les fonctions quasi analytiques, Gautier-Villars et Cie, Paris, 1926 | Zbl

[5] M. M. Lavrent'ev, “O zadache Koshi dlya lineynykh ellipticheskikh uravneniy”, DAN SSSR, 112:2 (1957), 195–197 | Zbl

[6] M. M. Lavrent'ev, O nekotorykh nekorrektnykh zadachakh matematicheskoy fiziki, Nauka, Novosibirsk, 1962 | Zbl

[7] Sh. Yarmukhamedov, “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl

[8] Sh. Yarmukhamedov, “Funksiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. mat. Zhurnal, 45:3 (2004), 702–719 | MR | Zbl

[9] J. Adamar, Zadacha Koshi dlya lineynykh uravneniyami s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, Moskva, 1978 | MR

[10] V. K. Ivanov, “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoy polose”, Differents. uravneniya, 45:3 (1965), 131–136 | MR

[11] G. M. Goluzin, V. M. Krylov, “Obobshennaya formula Karlemana i yeyo prilozheniye k analiticheskomu prodolzheniyu funksiy”, Mat. sb., 40:2 (1993), 144–149

[12] L. A. Ayzenberg, Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR

[13] A. N. Tikhonov, “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[14] A. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[15] M. A. Aleksidze, Fundamentalnye funksii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1991 | MR

[16] E. V. Arbuzov, A. L. Bukhgeym, “Formula Karlemana dlya uravneniya Gelmgoltsa”, Sib. mat. Zhurnal, 47:3 (2006), 518–526 | MR | Zbl

[17] O. I. Makhmudov, I. E. Niyozov, “O zadache Koshi dlya mnogomernoy sistemy uravneniy Lame”, Izv. vuzov. Matem., 50:4 (2006), 41–50 | MR | Zbl

[18] I. E. Niyozov, O. I. Makhmudov, “Zadacha Koshi dlya sistemy uravneniy momentnoy teorii uprugosti v ${\mathbb R}^{m}$”, Izv. vuzov. Matem., 58:2 (2014), 30–37 | MR | Zbl

[19] D. A. Juraev, “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa”, II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya studentov i aspirantov “Matematika i yeyo prilozheniya v sovremennoy nauke i praktike” (Kursk, 2012), 33–38

[20] D. A. Juraev, “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa v ogranichennoy oblasti”, “Aktualnye problemy mexaniki, matematiki, informatiki-2012”, Mezhdunarodnaya konferentsiya posvyashyennaya 100-letiyu so dnya rozhdeniya professorov S. N. Chernikova, I.F. Vereshagina, L.I. Volkovysskogo (Perm, 2012), 43 | MR | Zbl

[21] D. A. Juraev, “Konstruktsiya fundamentalnogo resheniya uravneniya Gelmgoltsa”, Doklady Akademii nauk Respubliki Uzbekistan, 4 (2012), 14–17

[22] D. A. Juraev, “Regulyarizatsiya zadachi Koshi dlya sistem uravneniy ellipticheskogo tipa pervogo poryadka”, Uzbekskiy Matematicheskiy zhurnal, 2 (2016), 61–71 | MR

[23] D. A. Juraev, “Zadacha Koshi dlya matrichnykh faktorizatsiy uravneniya Gelmgoltsa v neogranichennoy oblasti”, Sib. Elektron. Matem. Izv., 14 (2017), 752–764 | MR | Zbl

[24] D. A. Juraev, “Zadacha Koshi dlya matrichnykh faktorizatsiy uravneniya Gelmgoltsa”, Ukr. Mat. Zhur., 69:10 (2017), 1364–1371 | MR