On the method of a small parameter in nonlinear mathematical physics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1680-1686.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of a small parameter has been used in mathematical physics for a long time. However, with its help, in general, asymptotic solutions of differential equations are obtained. In the framework of the regularization method, S.A. Lomov proved that under certain restrictions on the data of the problem, one can obtain solutions in the form of series converging in the usual sense in powers of the small parameter, that is, solutions analytically dependent on the parameter. Here we consider two equations — the Burgers equation and the Klein–Gordon equation. The first of them represents a one-dimensional model of hydrodynamics, and the second one is considered in quantum field theory.
Keywords: Burgers equation, analytic solution
Mots-clés : Klein–Gordon equation, Faa-da-Bruno formula.
@article{SEMR_2018_15_a145,
     author = {V. I. Kachalov and Yu. S. Fedorov},
     title = {On the method of a small parameter in nonlinear mathematical physics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1680--1686},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a145/}
}
TY  - JOUR
AU  - V. I. Kachalov
AU  - Yu. S. Fedorov
TI  - On the method of a small parameter in nonlinear mathematical physics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1680
EP  - 1686
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a145/
LA  - ru
ID  - SEMR_2018_15_a145
ER  - 
%0 Journal Article
%A V. I. Kachalov
%A Yu. S. Fedorov
%T On the method of a small parameter in nonlinear mathematical physics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1680-1686
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a145/
%G ru
%F SEMR_2018_15_a145
V. I. Kachalov; Yu. S. Fedorov. On the method of a small parameter in nonlinear mathematical physics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1680-1686. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a145/

[1] S.A. Lomov, I.S. Lomov, Fundamentals of the mathematical theory of the boundary layer, MGU, M., 2011

[2] V.I. Kachalov, “On holomorphic regularization of singularly perturbed systems of differential equations”, Journal of Computational Mathematics and Mathematical Physics, 57:4 (2017), 64–71 (in Russian) | MR

[3] B.I. Suleimanov, “The emergence of nondissitively shock waves and the «nonperturbative» quantum theory of gravitation”, Journal of Experimental and Theoretical Physics, 105:5 (1994), 1089–1097 (in Russian) | MR

[4] B.I. Suleimanov, “«Quantization» of higher Hamiltonian analogues of the Painleve I and II equations with two degrees of freedom”, Functional analysis and its applications, 48:3 (2014), 52–62 (in Russian) | DOI | MR

[5] A.V. Bitsadze, Equations of Mathematical Physics, Nauka, M., 1976 | MR

[6] G.I. Arkhipov, V.A. Sadovnichy, V.N. Chubarikov, Lectures on mathematical analysis, MGU, M., 2004

[7] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lectures on the theory of functions of a complex variable, Nauka, M., 1989 | MR