Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a145, author = {V. I. Kachalov and Yu. S. Fedorov}, title = {On the method of a small parameter in nonlinear mathematical physics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1680--1686}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a145/} }
TY - JOUR AU - V. I. Kachalov AU - Yu. S. Fedorov TI - On the method of a small parameter in nonlinear mathematical physics JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1680 EP - 1686 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a145/ LA - ru ID - SEMR_2018_15_a145 ER -
V. I. Kachalov; Yu. S. Fedorov. On the method of a small parameter in nonlinear mathematical physics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1680-1686. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a145/
[1] S.A. Lomov, I.S. Lomov, Fundamentals of the mathematical theory of the boundary layer, MGU, M., 2011
[2] V.I. Kachalov, “On holomorphic regularization of singularly perturbed systems of differential equations”, Journal of Computational Mathematics and Mathematical Physics, 57:4 (2017), 64–71 (in Russian) | MR
[3] B.I. Suleimanov, “The emergence of nondissitively shock waves and the «nonperturbative» quantum theory of gravitation”, Journal of Experimental and Theoretical Physics, 105:5 (1994), 1089–1097 (in Russian) | MR
[4] B.I. Suleimanov, “«Quantization» of higher Hamiltonian analogues of the Painleve I and II equations with two degrees of freedom”, Functional analysis and its applications, 48:3 (2014), 52–62 (in Russian) | DOI | MR
[5] A.V. Bitsadze, Equations of Mathematical Physics, Nauka, M., 1976 | MR
[6] G.I. Arkhipov, V.A. Sadovnichy, V.N. Chubarikov, Lectures on mathematical analysis, MGU, M., 2004
[7] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lectures on the theory of functions of a complex variable, Nauka, M., 1989 | MR