Subtle hyperplanes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1553-1555.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the countably-dimensional vector space $C_{00}$ of all sequences with finite support contains a convex cone $K$ that does not include straight lines and is closed Archiemedean but not closed in the Mackey topology $\tau$ corresponding to the duality $\langle C_{00}| F\rangle$, where $F$ is a hyperplane in the algebraic dual space $C_{00}^\#$.
Keywords: cone, duality of topology vector spaces.
@article{SEMR_2018_15_a141,
     author = {K. V. Storozhuk},
     title = {Subtle hyperplanes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1553--1555},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a141/}
}
TY  - JOUR
AU  - K. V. Storozhuk
TI  - Subtle hyperplanes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1553
EP  - 1555
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a141/
LA  - ru
ID  - SEMR_2018_15_a141
ER  - 
%0 Journal Article
%A K. V. Storozhuk
%T Subtle hyperplanes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1553-1555
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a141/
%G ru
%F SEMR_2018_15_a141
K. V. Storozhuk. Subtle hyperplanes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1553-1555. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a141/

[1] Gutman A. E., Emel'yanov E. Yu., Matyukhin A. V., “Nonclosed Archimedean cones in locally convex spaces”, Vladikavkaz. Mat. Zh., 17:3 (2015), 36–43 (in Russian) | MR