Subtle hyperplanes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1553-1555
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the countably-dimensional vector space $C_{00}$ of all sequences with finite support contains a convex cone $K$ that does not include straight lines and is closed Archiemedean but not closed in the Mackey topology $\tau$ corresponding to the duality $\langle C_{00}| F\rangle$, where $F$ is a hyperplane in the algebraic dual space $C_{00}^\#$.
Keywords:
cone, duality of topology vector spaces.
@article{SEMR_2018_15_a141,
author = {K. V. Storozhuk},
title = {Subtle hyperplanes},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1553--1555},
year = {2018},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a141/}
}
K. V. Storozhuk. Subtle hyperplanes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1553-1555. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a141/
[1] Gutman A. E., Emel'yanov E. Yu., Matyukhin A. V., “Nonclosed Archimedean cones in locally convex spaces”, Vladikavkaz. Mat. Zh., 17:3 (2015), 36–43 (in Russian) | MR