Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a133, author = {R. V. Ulvert}, title = {On computability of multiple integrals by means of a sum of local residues}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {996--1010}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a133/} }
TY - JOUR AU - R. V. Ulvert TI - On computability of multiple integrals by means of a sum of local residues JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 996 EP - 1010 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a133/ LA - ru ID - SEMR_2018_15_a133 ER -
R. V. Ulvert. On computability of multiple integrals by means of a sum of local residues. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 996-1010. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a133/
[1] A.K. Tsikh, Multidimensional Residues and their Applications, Translations of Mathematical Monographs, 103, AMS, Providence, 1992 | DOI | MR | Zbl
[2] O.N. Zhdanov, A.K. Tsikh, “Studying the multiple Mellin–Barnes integrals by means of multidimensional residues”, Siberian Mathematical Journal, 39:2 (1998), 245–260 | DOI | MR | Zbl
[3] S. Friot, D. Greynat, “On convergent series representation of Mellin–Barnes integrals”, Journal of Mathematical Physics, 53:2 (2012), 023508 | DOI | MR | Zbl
[4] M. Passare, A.K. Tsikh, A.A. Cheshel, “Multiple Mellin–Barnes integrals as periods of Calabi–Yau manifolds with several moduli”, Theoretical and Mathematical Physics, 109:3 (1997), 1544–1555 | DOI | MR
[5] J. Charles, D. Greynat, E. de Rafael, “The Mellin–Barnes approach to hadronic vacuum polarization and $g_{\mu}-2$”, Physical Review D, 97 (2018), 076014 | DOI
[6] K.V. Safonov, A.K. Tsikh, “Singularities of the Grothendieck parametric residue and diagonals of a double power series”, Soviet Mathematics (Izvestiya VUZ. Matematika), 28:4 (1984), 65–74 | MR | Zbl
[7] D.Yu. Pochekutov, “Diagonals of the Laurent series of rational functions”, Siberian Mathematical Journal, 50:6 (2009), 1081–1091 | DOI | MR | Zbl
[8] O.I. Egorushkin, I.V. Kolbasina, K.V. Safonov, “On application of multidimensional complex analysis in formal language and grammar theory”, Applied Discrete Mathematics, 37 (2017), 76–89 (in Russian) | DOI | MR
[9] P. Griffiths, J. Harris, Principles of algebraic geometry, John Wiley and Sons, New York, 1978 | MR | Zbl
[10] A.K. Tsikh, “Cycles separating zeros of analytic functions in $\mathbb{C}^n$”, Siberian Mathematical Journal, 16:5 (1975), 859–862 | DOI | MR
[11] A.P. Yuzhakov, “A coboundary condition of Leray and its application to logarithmic residues”, Siberian Mathematical Journal, 11:3 (1970), 540–542 | DOI | MR | Zbl
[12] A.P. Yuzhakov, “A separating subgroup and local residues”, Siberian Mathematical Journal, 29:6 (1988), 1028–1033 | DOI | MR | Zbl
[13] R.V. Ulvert, “Homological Resolutions in Problems About Separating Cycles”, Siberian Mathematical Journal, 59:3 (2018), 542–550 | DOI | Zbl
[14] A.P. Yuzhakov, “On the separation of analytic singularities and the decomposition of holomorphic functions of n variables into partial fractions”, Multidimensional complex analysis, IF SO USSR, Krasnoyarsk, 1986, 210–220 (in Russian) | MR
[15] E.K. Leinartas, “Factorization of rational functions of several variables into partial fractions”, Soviet Mathematics (Izvestiya VUZ. Matematika), 22:10 (1978), 35–38 | MR