On computability of multiple integrals by means of a sum of local residues
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 996-1010

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $n$-fold integrals of meromorphic differential $n$-forms on an $n$-dimensional complex manifold and study the problem of computability of such integrals by means of local (Grothendieck) residues of these forms. This problem is relevant in various fields of theoretical physics (in superstring theory for study of periods of Calabi–Yau manifolds, in particle physics for computation of anomalous magnetic moments of muons). The obtained theorems refine earlier results of A.K. Tsikh and A.P. Yuzhakov.
Keywords: local residue, local cycle, separating cycle.
@article{SEMR_2018_15_a133,
     author = {R. V. Ulvert},
     title = {On computability of multiple integrals by means of a sum of local residues},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {996--1010},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a133/}
}
TY  - JOUR
AU  - R. V. Ulvert
TI  - On computability of multiple integrals by means of a sum of local residues
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 996
EP  - 1010
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a133/
LA  - ru
ID  - SEMR_2018_15_a133
ER  - 
%0 Journal Article
%A R. V. Ulvert
%T On computability of multiple integrals by means of a sum of local residues
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 996-1010
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a133/
%G ru
%F SEMR_2018_15_a133
R. V. Ulvert. On computability of multiple integrals by means of a sum of local residues. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 996-1010. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a133/