On coordinate vector-functions of quasiregular mappings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 768-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f:R^n \to R^n=R^k\times R^{n-k}$ ($1\leq k\leq n-1$) be a $K$-quasiregular mapping and $\pi: R^n\to R^k$ denotes the canonical projection. Then we obtain a lower estimate for the distortion of the values of generalized angles in $R^k$ under the multy-valued function $F=f^{-1}\circ \pi^{-1}: R^k \to R^n$. This estimate is Möbius invariant and depends only on $K$ and $n$.
Keywords: quasiregular map, conformal capacity of condenser, Teichmüller's ring, generalized angle, mapping of bounded angular distortion.
@article{SEMR_2018_15_a128,
     author = {V. V. Aseev},
     title = {On coordinate vector-functions of quasiregular mappings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {768--772},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a128/}
}
TY  - JOUR
AU  - V. V. Aseev
TI  - On coordinate vector-functions of quasiregular mappings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 768
EP  - 772
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a128/
LA  - en
ID  - SEMR_2018_15_a128
ER  - 
%0 Journal Article
%A V. V. Aseev
%T On coordinate vector-functions of quasiregular mappings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 768-772
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a128/
%G en
%F SEMR_2018_15_a128
V. V. Aseev. On coordinate vector-functions of quasiregular mappings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 768-772. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a128/

[1] V.V. Aseev, A.V. Sychev, A.V. Tetenov, “Möbius-invariant metrics and generalized angles in Ptolemaic spaces”, Sib. Math. J., 46:2 (2005), 189–204 | DOI | MR | Zbl

[2] V.V. Aseev, “Generalized angles in Ptolemaic Möbius structures”, Sib. Math. J., 59:2 (2018), 241–256 | DOI | MR | Zbl

[3] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I Math., 448 (1969), 1–40 | MR

[4] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I Math., 465 (1970), 1–13 | MR

[5] O. Martio, S. Rickman, J. Väisälä, “Topological and metric properties of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. AIM ath., 488 (1971), 1–31 | MR

[6] Y.G. Reshetnyak, Space mappings with bounded distortion, Translations of Math. Monographs, 73, Amer. Math. Soc., Providence, R.I., 1989 | DOI | MR | Zbl

[7] S. Rickman, Quasiregular mappings, Springer-Verlag, Berlin, 1993 | MR | Zbl

[8] M. Vuorinen, Conformal geometry and quasiregular mappings, Lect. Notes Math., 1319, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokio, 1988 | DOI | MR | Zbl