Partial sums of a generalized class of analytic functions defined by~a~generalized Srivastava--Attiya operator
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 362-372.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f_n(z)=z+\sum_{k=2}^{n} a_k z^k$ be the sequence of partial sums of the analytic function $f(z)=z+ \sum_{k=2}^{\infty} a_k z^k $. In this paper, we determine sharp lower bounds for   $\Re\{f(z)/f_n(z)\}, \Re\{f_n(z)/f(z)\}, \Re\{f'(z)/f'_n(z)\}$ and $\Re\{f'_n(z)/f'(z)\} $. The efficiency of the main result not only provides the unification of the results discussed in the literature but also generates certain new results.
Keywords: analytic functions, generalized Hurwitz–-Lerch zeta function, Srivastava–Attiya operator.
Mots-clés : Hadamard product (or convolution)
@article{SEMR_2018_15_a126,
     author = {K. A. Challab and M. Darus and F. Ghanim},
     title = {Partial sums of a generalized class of analytic functions defined by~a~generalized {Srivastava--Attiya} operator},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {362--372},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a126/}
}
TY  - JOUR
AU  - K. A. Challab
AU  - M. Darus
AU  - F. Ghanim
TI  - Partial sums of a generalized class of analytic functions defined by~a~generalized Srivastava--Attiya operator
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 362
EP  - 372
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a126/
LA  - en
ID  - SEMR_2018_15_a126
ER  - 
%0 Journal Article
%A K. A. Challab
%A M. Darus
%A F. Ghanim
%T Partial sums of a generalized class of analytic functions defined by~a~generalized Srivastava--Attiya operator
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 362-372
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a126/
%G en
%F SEMR_2018_15_a126
K. A. Challab; M. Darus; F. Ghanim. Partial sums of a generalized class of analytic functions defined by~a~generalized Srivastava--Attiya operator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 362-372. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a126/

[1] Alexander J. W., “Functions which map the interior of the unit circle upon simple regions”, The Annals of Mathematics, 17:1 (1915), 12–22 | DOI | MR | Zbl

[2] Bernardi S. D., “Convex and starlike univalent functions”, Transactions of the American Mathematical Society, 135 (1969), 429–446 | DOI | MR | Zbl

[3] Challab K. A., Darus M., Ghanim F., “Certain problems related to generalized Srivastava-Attiya operator”, Asian-European Journal of Mathematics, 10:2 (2017), 1–21 | DOI | MR | Zbl

[4] Challab K. A., Darus M., Ghanim F., “Inclusion properties of meromorphic functions associated with the extended Cho-Kwon-Srivastava operator by using hypergeometric function”, Nonlinear Functional Analysis and Applications, 22:5 (2017), 925–936 | Zbl

[5] Challab K. A., Darus M., Ghanim F., “On Certain Subclass of Meromorphic Functions Defined by New Linear Differential Operator”, Journal of Mathematical and Fundamental Sciences, 49:3 (2017), 269–282 | DOI | MR

[6] Challab K. A., Darus M., Ghanim F., “On subclass of meromorphically univalent functions defined by a linear operator associated with $\lambda$-generalized Hurwitz-Lerch zeta function and $q$-hypergeometric function”, Italian Journal of Pure and Applied Mathematics, 2017 (to appear) | MR

[7] Choi J. H., Saigo M., Srivastava H. M., “Some inclusion properties of a certain family of integral operators”, Journal of Mathematical Analysis and Applications, 276:1 (2002), 432–445 | DOI | MR | Zbl

[8] Frasin B. A., “Generalization of partial sums of certain analytic and univalent functions”, Applied Mathematics Letters, 21:7 (2008), 735–741 | DOI | MR | Zbl

[9] Jung I. B., Kim Y. C., Srivastava H. M., “The hardy space of analytic functions associated with certain one-parameter families of integral operators”, Journal of Mathematical Analysis and Applications, 176:1 (1993), 138–147 | DOI | MR | Zbl

[10] Ling Y., Liu F., “The Choi–Saigo–Srivastava integral operator and a class of analytic functions”, Applied mathematics and computation, 165:3 (2005), 613–621 | DOI | MR | Zbl

[11] Maharana S., Prajapat J. K., Srivastava H. M., “The radius of convexity of partial sums of convex functions in one direction”, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87:2 (2017), 215–219 | DOI | MR | Zbl

[12] Murugusundaramoorthy G., A subclass of analytic functions associated with the Hurwitz-Lerch zeta function, 39:2 (2010), 265–272 | MR | Zbl

[13] Murugusundaramoorthy G., “Subordination results and integral means inequalities for k-uniformly starlike functions defined by convolution involving the Hurwitz-Lerch zeta function”, Studia Universitatis Babes-Bolyai Mathematica, 55:4 (2010), 155–166 | MR | Zbl

[14] Murugusundaramoorthy G., Rosy T., Muthunagai K., “A unified class of analytic functions with negative coefficients”, Lobachevskii Journal of Mathematics, 29:3 (2008), 175–185 | DOI | MR | Zbl

[15] Murugusundaramoorthy G., Uma K., Darus M., “Partial sums of generalized class of analytic functions involving Hurwitz-Lerch zeta function”, Abstract and Applied Analysis, 2011 (2011), 1–10 | DOI | MR | Zbl

[16] Owa S., Srivastava H. M., Saito N., “Partial sums of certain classes of analytic functions”, International Journal of Computer Mathematics, 81:10 (2004), 1239–1256 | DOI | MR | Zbl

[17] Prajapat J. K., Goyal S. P., “Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions”, Journal of Mathematical Inequalities, 3:1 (2009), 129–137 | DOI | MR | Zbl

[18] Rosy T., Subramanian K. G., Murugusundaramoorthy G., “Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives”, Journal of Inequalities in Pure and Applied Mathematics, 4:4 (2003), 1–8 | MR | Zbl

[19] Saxena R. K., Mathai A. M., Haubold H. J., The H-function: theory and applications, Springer Science, New York–Dordrecht–Heidelberg; Business Media, London, 2009 | MR

[20] Sheil-Small T., “A note on the partial sums of convex schlicht functions”, Bulletin of the London Mathematical Society, 2:2 (1970), 165–168 | DOI | MR | Zbl

[21] Silverman H. M., “Partial sums of starlike and convex functions”, Journal of Mathematical Analysis and Applications, 209:1 (1997), 221–227 | DOI | MR | Zbl

[22] Srivastava H. M., “A new family of the $\lambda$-generalized Hurwitz-Lerch zeta functions with applications”, Applied Mathematics Information Sciences, 8:4 (2014), 1485–1500 | DOI | MR

[23] Srivastava H. M., Attiya A. A., “An integral operator associated with the Hurwitz–Lerch zeta function and differential subordination”, Integral Transforms and Special Functions, 18:3 (2007), 207–216 | DOI | MR | Zbl

[24] Srivastava H. M., Choi J., Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, 2001 | MR | Zbl

[25] Srivastava H. M., Gaboury S., “A new class of analytic functions defined by means of a generalization of the Srivastava-Attiya operator”, Journal of Inequalities and Applications, 2015:1 (2015), 1–15 | DOI | MR | Zbl

[26] Srivastava H. M., Gaboury S., “New expansion formulas for a family of the-generalized Hurwitz-Lerch zeta functions”, International Journal of Mathematics and Mathematical Sciences, 2014 (2014), 1–13 | DOI | MR

[27] Srivastava H. M., Gaboury S., Ghanim F., “A unified class of analytic functions involving a generalization of the Srivastava–Attiya operator”, Applied Mathematics and Computation, 251 (2015), 35–45 | DOI | MR | Zbl

[28] Srivastava H. M., Gaboury S., Ghanim F., “Partial sums of certain classes of meromorphic functions related to the Hurwitz-Lerch zeta function”, Moroccan Journal of Pure and Applied Analysis, 1:1 (2015), 38–50 | DOI | MR

[29] Srivastava H. M., Gupta K. C., Goyal S. P., The H-functions of one and two variables, with applications, South Asian Publishers, New Delhi–Madras, 1982 | MR | Zbl

[30] Srivastava H. M., R{ă}ducanu D., S{ă}l{ă}gean G. S., “A new class of generalized close-to-starlike functions defined by the Srivastava-Attiya operator”, Acta Mathematica Sinica, English Series, 29:5 (2013), 833–840 | DOI | MR | Zbl

[31] Srivastava H. M., Saxena R. K., Pogány T., Saxena R., “Integral and computational representations of the extended Hurwitz–Lerch zeta function”, Integral Transforms and Special Functions, 22:7 (2011), 487–506 | DOI | MR | Zbl

[32] Xiang R. G., Wang Z. G., Darus M., “A family of integral operators preserving subordination and superordination”, Bulletin of the Malaysian Mathematical Sciences Society, 33:1 (2010), 121–131 | MR | Zbl