Asymptotic integration of integridifferential equations with two independent variables
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 186-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the method of regularization of S.A. Lomov is generalized to integro-differential equations of Volterra type with multiple integral operator.We consider the case when the operator of multiplication of the differential part depends only on the differentiation variable. In this case, in contrast to the works of M.I. Imanaliev, a regularized asymptotic solution of any order (with respect to a parameter) is constructed. In addition, we consider and solve the so-called initialization problem. The formulation of this problem is as follows. It is necessary to choose a class of given data (say, $\Sigma$) so that the passage to the limit of an exact solution to a certain limiting regime (when the small parameter tends to zero) holds true on the entire set of changes of independent variables, including the boundary layer zone.
Keywords: singularly perturbed, integro-differential equations, regularization of the integral.
@article{SEMR_2018_15_a122,
     author = {A. A. Bobodzhanov and V. F. Safonov},
     title = {Asymptotic integration of integridifferential equations with two independent variables},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {186--197},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a122/}
}
TY  - JOUR
AU  - A. A. Bobodzhanov
AU  - V. F. Safonov
TI  - Asymptotic integration of integridifferential equations with two independent variables
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 186
EP  - 197
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a122/
LA  - ru
ID  - SEMR_2018_15_a122
ER  - 
%0 Journal Article
%A A. A. Bobodzhanov
%A V. F. Safonov
%T Asymptotic integration of integridifferential equations with two independent variables
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 186-197
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a122/
%G ru
%F SEMR_2018_15_a122
A. A. Bobodzhanov; V. F. Safonov. Asymptotic integration of integridifferential equations with two independent variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 186-197. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a122/

[1] V.F. Safonov, A.A. Bobodzhanov, Course of higher mathematics. Singularly perturbed equations and the regularization method: textbook, Izdatelstvo MEI, M., 2012 (In Russian)

[2] S.A. Lomov, Introduction to the general theory of singular perturbations, Nauka, M., 1981 (In Russian) | MR

[3] S.A. Lomov, I.S. Lomov, Fundamentals of the mathematical theory of the boundary layer, Moscow University Press, M., 2011 (In Russian)

[4] M.I. Imanaliev, Methods for solving inverse problems and their application, ILIM, Frunze, 1977 (In Russian) | MR | Zbl

[5] V.I. Smirnov, Course of higher mathematics, v. 4, GIFML, M., 1958 (In Russian) | MR

[6] A.N. Filatov, L.V. Sharova, Integral inequalities and the theory of nonlinear oscillations, Nauka, M., 1976 (In Russian) | MR | Zbl