Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a112, author = {A. S. Popov}, title = {Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D}_{5d}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {389--396}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a112/} }
TY - JOUR AU - A. S. Popov TI - Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D}_{5d}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 389 EP - 396 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a112/ LA - ru ID - SEMR_2018_15_a112 ER -
%0 Journal Article %A A. S. Popov %T Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D}_{5d}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 389-396 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a112/ %G ru %F SEMR_2018_15_a112
A. S. Popov. Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D}_{5d}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 389-396. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a112/
[1] S.L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sibirskii Mat. Zh., 3:5 (1962), 769–796 (in Russian) | MR | Zbl
[2] A.D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl
[3] V.I. Lebedev, “Nodes and weights of Gauss-Markov type quadrature formulas from 9th to 17th accuracy orders for a sphere which are invariant under the octahedral group with inversion”, Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 48–54 (in Russian) | MR | Zbl
[4] V.I. Lebedev, “On quadratures for a sphere”, Zh. Vychisl. Mat. Mat. Fiz., 16:2 (1976), 293–306 (in Russian) | MR | Zbl
[5] S.I. Konyaev, “Gauss type quadratures for a sphere invariant under icosahedral group with inversion”, Mat. Zametki, 25:4 (1979), 629–634 (in Russian) | MR | Zbl
[6] I.P. Mysovskikh, Interpolation Cubature Formulas, Nauka, M., 1981 (in Russian) | MR | Zbl
[7] A.S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Siberian J. Num. Math., 5:4 (2002), 367–372 (in Russian) | MR
[8] A.S. Popov, “Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons”, Siberian Electronic Mathematical Reports, 14 (2017), 190–198 (in Russian) | MR | Zbl
[9] A.S. Popov, “Cubature formulas invariant under the icosahedral group of rotations with inversion on a sphere”, Numerical Analysis and Applications, 10:4 (2017), 339–346 | DOI | MR
[10] A.S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Modelling, 9:6 (1994), 535–546 | DOI | MR | Zbl
[11] A.S. Popov, “Cubature formulas on a sphere that are invariant with respect to a group of dihedron rotations with inversion $D_{6h}$”, Numerical Analysis and Applications, 6:1 (2013), 49–53 | DOI | MR | Zbl
[12] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $D_{4h}$”, Siberian Electronic Mathematical Reports, 12 (2015), 457–464 (in Russian) | MR | Zbl
[13] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group $D_{2h}$”, Siberian Electronic Mathematical Reports, 13 (2016), 252–259 (in Russian) | MR | Zbl
[14] A.N. Kazakov, V.I. Lebedev, “Gauss type quadrature formulas for a sphere that are invariant with respect to the group of dihedron”, Tr. Mat. Inst. Steklova, 203 (1994), 100–112 (in Russian) | MR | Zbl
[15] F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 1956 | MR | Zbl
[16] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Nauka, M., 1989 (in Russian) | MR | Zbl
[17] V.A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 (in Russian) | MR | Zbl
[18] V.A. Ditkin, L.A. Lyusternik, “On a method of practical harmonic analysis on a sphere”, Vychisl. Matematika i Vychisl. Tekhnika, v. 1, Mashgiz, M., 1953, 3–13 (in Russian) | MR | Zbl