Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a111, author = {S. I. Markov and N. B. Itkina}, title = {Mathematical modeling single-phase fluid flows in porous media}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {115--134}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a111/} }
TY - JOUR AU - S. I. Markov AU - N. B. Itkina TI - Mathematical modeling single-phase fluid flows in porous media JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 115 EP - 134 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a111/ LA - ru ID - SEMR_2018_15_a111 ER -
S. I. Markov; N. B. Itkina. Mathematical modeling single-phase fluid flows in porous media. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 115-134. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a111/
[1] T. Xu, P.G. Ranjith, A.S.K. Au, P.L.P. Wasantha, T.H.Yang, C.A. Tang, H.L. Liu, C.F. Chen, “Numerical and experimental investigation of hydraulic fracturing in Kaolin clay”, Journal of Petroleum Science and Engineering, 134 (2015), 223–236 | DOI
[2] Y. Wang, S. Wang, Sh. Xue, D. Adhikary, “Numerical Modeling of Porous Flow in Fractured Rock and Its Applications in Geothermal Energy Extraction”, Journal of Earth Science, 26:1 (2015), 20–27 | DOI
[3] N.B. Itkina, S.I. Markov, “Discontinuous Galerkin Method for solution of singularly perturbed problems”, Computational technologies, 21:4 (2016), 49–63 | Zbl
[4] B. Cocburn, “Discontinuous Galerkin methods for convection-dominated problems”, High-Order Methods for Computational Physics, 9 (2005), 69–224 | DOI | MR
[5] D.N. Arnold, F. Brezzi, B. Cocburn, D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl
[6] A. Boschan, B. Noetinger, “Scale Dependence of Effective Hydraulic Conductivity Distributions in 3D Heterogeneous Media: A Numerical Study”, Transport in Porous Media, 94:1 (2012), 101–121 | DOI
[7] M.R. Karim, K. Krabbenhoft, “New Renormalization Schemes for Conductivity Upscaling in Heterogeneous Media”, Transp. Porous Med., 85 (2010), 677–690 | DOI | MR
[8] V. V. Zhikov, “Connectedness and homogenization. Examples of fractal conductivity”, Sb. Math., 187:8 (1996), 1109–1147 | DOI | MR
[9] O. A. Oleinik, V. V. Zhikov, “On the homogenization of elliptic operators with almost-periodic coefficients”, Seminario Mat e Fis di Milano, 52:1 (1982), 149–166 | DOI | MR
[10] S. A. Nazarov, A. S. Slutskii, “Branching periodicity: Homogenization of the Dirichlet problem for an elliptic system”, Doklady Mathematics, 70:1 (2004), 628 | MR
[11] Y. Amirat, V.V. Shelukhin, “Homogenization of composite electrets”, European Journal of Applied Mathematics, 28:2 (2017), 261–283 | DOI | MR
[12] Y. Amirat, V.V. Shelukhin, “Nonhomogeneous incompressible herschel-bulkley fluid flows between two eccentric cylinders”, Journal of Mathematical Fluid Mechanics, 15:4 (2013), 635–661 | DOI | MR
[13] E. A. Borges da Silva, D. P. Souza, A. A. Ulson de Souza, S. M. A. Guelli, U. de Souza, “Prediction of effective diffusivity tensors for bulk diffusion with chemical reactions in porous media”, Brazilian Journal of Chemical Engineering, 24:1 (2007), 47–60 | DOI
[14] C. Engström, “Inverse Bounds of Two-Component Composites”, SIAM Journal of Applied Mathematics, 68:3 (2007), 666–679 | DOI | MR
[15] S. K. Schnyder, M. Spanner, F. H{ö}fling, T. Franosch, J. Horbach, “Rounding of the localization transition in model porous media”, Soft Matter, 11 (2015), 701–711 | DOI
[16] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Paris, 2004 | MR
[17] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, A.G. Yagola, Numerical methods for solving noncorrect problems, Nauka, M., 1990 | MR
[18] A.A. Samarsky, P.N. Vabishchevich, Numerical methods for solving inverse problems of mathematical physics, Publishing house LCI, M., 2009 | MR
[19] A.N. Tikhonov, A.A. Samarsky, Methods of mathematical modeling, automation of observation processing and their applications, MSU, M., 1986 | MR | Zbl
[20] Khalil K. Abbo, Farah H. Mohammed, “Spectral Fletcher-Reeves algorithm for solving nonlinear unconstrained optimization problems”, Iraqi Journal of Statistical Sciences, 2011, 21–38