Abelian Schur groups of odd order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 397-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called a Schur group if any Schur ring over $G$ is associated in a natural way with a subgroup of $\mathrm{sym}\,(G)$ that contains all right translations. It is proved that the group $C_3\times C_3\times C_p$ is Schur for any prime $p$. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.
Keywords: Schur rings, Schur groups, permutation groups.
@article{SEMR_2018_15_a11,
     author = {I. N. Ponomarenko and G. K. Ryabov},
     title = {Abelian {Schur} groups of odd order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {397--411},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
AU  - G. K. Ryabov
TI  - Abelian Schur groups of odd order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 397
EP  - 411
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/
LA  - en
ID  - SEMR_2018_15_a11
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%A G. K. Ryabov
%T Abelian Schur groups of odd order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 397-411
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/
%G en
%F SEMR_2018_15_a11
I. N. Ponomarenko; G. K. Ryabov. Abelian Schur groups of odd order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 397-411. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/

[1] S. Evdokimov, I. Ponomarenko, “Schur rings over a product of Galois rings”, Beitr. Algebra Geom., 55:1 (2014), 105–138 | DOI | MR | Zbl

[2] S. Evdokimov, I. Ponomarenko, “Coset closure of a circulant S-ring and schurity problem”, J. Algebra Appl., 15:4 (2016), 1650068 | DOI | MR | Zbl

[3] S. Evdokimov, I. Kovács, I. Ponomarenko, “Characterization of cyclic Schur groups”, St. Petersburg Math. J., 25:5 (2014), 755–773 | DOI | MR | Zbl

[4] S. Evdokimov, I. Kovács, I. Ponomarenko, “On schurity of finite abelian groups”, Commun. Algebra, 44:1 (2016), 101–117 | DOI | MR | Zbl

[5] M. Klin, C. Pech, S. Reichard, COCO2P – a GAP package, ver. 0.14, , 2015 http://www.math.tu-dresden.de/p̃ech/COCO2P

[6] M. Klin, R. Pöschel, “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”, Algebraic Methods in Graph Theory (Szeged, 1978), Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam, 1981, 405–434 | MR | Zbl

[7] K. H. Leung, S. L. Ma, “The structure of Schur rings over cyclic groups”, J. Pure Appl. Algebra, 66:3 (1990), 287–302 | DOI | MR | Zbl

[8] M. Muzychuk, I. Ponomarenko, “On Schur $2$-groups”, J. Math. Sci., New York, 219:4 (2016), 565–594 | DOI | MR | Zbl

[9] R. Nedela, I. Ponomarenko, Recognizing and testing isomorphism of Cayley graphs over an abelian group of order $4p$ in polynomial time, 2017, 22 pp., arXiv: 1706.06145 [math.CO] | MR

[10] R. Pöschel, “Untersuchungen von S-Ringen insbesondere im Gruppenring von $p$-Gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl

[11] G. Ryabov, “On Schur $p$-groups of odd order”, J. Algebra Appl., 16:3 (2017), 1750045 | DOI | MR | Zbl

[12] I. Schur, “Zür theorie der einfach transitiven permutationsgruppen”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 18–20 (1933), 598–623 | Zbl

[13] R. Schmidt, Subgroup lattices of groups, Gruyter, Berlin, 1994 | MR | Zbl

[14] O. Tamaschke, “Zur Theorie der Permutationsgruppen mit regularer Untergruppe, I”, Math. Zeitschr., 80 (1963), 328–354 | DOI | MR | Zbl

[15] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[16] M. Ziv-Av, “Enumeration of Schur rings over small groups”, Lecture Notes in Computer Science, 8660, 2014, 491–500 | DOI | Zbl