Abelian Schur groups of odd order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 397-411

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called a Schur group if any Schur ring over $G$ is associated in a natural way with a subgroup of $\mathrm{sym}\,(G)$ that contains all right translations. It is proved that the group $C_3\times C_3\times C_p$ is Schur for any prime $p$. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.
Keywords: Schur rings, Schur groups, permutation groups.
@article{SEMR_2018_15_a11,
     author = {I. N. Ponomarenko and G. K. Ryabov},
     title = {Abelian {Schur} groups of odd order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {397--411},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
AU  - G. K. Ryabov
TI  - Abelian Schur groups of odd order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 397
EP  - 411
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/
LA  - en
ID  - SEMR_2018_15_a11
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%A G. K. Ryabov
%T Abelian Schur groups of odd order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 397-411
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/
%G en
%F SEMR_2018_15_a11
I. N. Ponomarenko; G. K. Ryabov. Abelian Schur groups of odd order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 397-411. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a11/