Optimal control of a thin rigid stiffener for a model describing
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1485-1497.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of variational problems describing equilibrium of plates containing a crack and rigid thin stiffener on the outer boundary. Nonlinear conditions of the Signorini type on the crack faces are imposed. For this family of problems, we formulate an optimal problem with a control parameter determining the length of the thin rigid stiffener. Meanwhile, a cost functional is specified with the help of an arbitrary continuous functional in the solution space. The existence of the solution to the optimal control problem is proved. We state the continuous dependence of the solutions with respect to the stiffener's size parameter.
Keywords: variational inequality, optimal control problem, nonpenetration condition, crack, energy functional.
@article{SEMR_2018_15_a108,
     author = {N. P. Lazarev and S. Das and M. P. Grigoryev},
     title = {Optimal control of a thin rigid stiffener for a model describing},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1485--1497},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - S. Das
AU  - M. P. Grigoryev
TI  - Optimal control of a thin rigid stiffener for a model describing
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1485
EP  - 1497
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/
LA  - ru
ID  - SEMR_2018_15_a108
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A S. Das
%A M. P. Grigoryev
%T Optimal control of a thin rigid stiffener for a model describing
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1485-1497
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/
%G ru
%F SEMR_2018_15_a108
N. P. Lazarev; S. Das; M. P. Grigoryev. Optimal control of a thin rigid stiffener for a model describing. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1485-1497. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/

[1] N.F. Morozov, Mathematical Problems of the Theory of Cracks, Nauka, M., 1984 (in Russian) | MR

[2] A.M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)

[3] A.M. Khludnev, “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A Solids, 32:1 (2012), 69–75 | DOI | MR | Zbl

[4] A.M. Khludnev, T.S. Popova, “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, Z. Angew. Math. Mech., 97:11 (2017), 1406–1417 | MR

[5] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000

[6] A.M. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl

[7] V.A. Kovtunenko, “Shape sensitivity of curvilinear cracks on interface to non-linear perturbations”, Z. Angew. Math. Phys., 54:3 (2003), 410–423 | DOI | MR | Zbl

[8] N.P. Lazarev, H. Itou, N.V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl

[9] V.V. Shcherbakov, “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[10] V.V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl

[11] A.M. Khludnev, V.V. Shcherbakov, “A note on crack propagation paths inside elastic bodies”, Applied Mathematics Letters, 79:1 (2018), 80–84 | DOI | MR

[12] E.V. Pyatkina, “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Indust. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl

[13] D. Knees, A. Schroder, “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Meth. Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl

[14] E. Rudoy, “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM-Math. Model. Num., 50:4 (2016), 995–1009 | DOI | MR | Zbl

[15] M. Hintermüller, V.A. Kovtunenko, “From shape variation to topological changes in constrained minimization: A velocity method-based concept”, Optim. Method Softw., 26:4–5 (2011), 513–532 | DOI | MR | Zbl

[16] V.A. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: The antiplane variational model”, Siam. J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl

[17] A. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. und Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl

[18] A.M. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl

[19] E.M. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:1 (2017), 19 | DOI | MR | Zbl

[20] A.M. Khludnev, A.A. Novonty, J. Sokolowsky, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids., 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[21] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[22] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 2018 | DOI | MR

[23] N.P. Lazarev, E.M. Rudoy, “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR

[24] N. Lazarev, T. Popova, G. Semenova, “Existence of an optimal size of a rigid inclusion for an equilibrium problem of a Timoshenko plate with Signorini-type boundary condition”, Journal of Inequalities and Application, 2016, 18 | DOI | MR

[25] F. Dal Corso, D. Bigoni, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full-field solution and asymptotics”, J. Mech. Phys. Solids, 56:3 (2008), 815–838 | DOI | MR | Zbl

[26] I.I. Ilina, V.V. Silvestrov, “Zadacha o tonkom zhestkom mezhfaznom vklyuchenii, otsoyedinivshemsya vdol' odnoy storony ot sredy”, Izvestiya RAN. Mekhanika tverdogo tela, 2005, no. 3, 153–166 (in Russian)

[27] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[28] Z.M. Xiao, B.J. Chen, “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, Int. J. Fract., 108:3 (2001), 193–205 | DOI

[29] P.K. Mishra, S. Das, M. Gupta, “Interaction between interfacial and sub-interfacial cracks in a composite media – Revisited”, Z. Angew. Math. Mech., 96:9 (2016), 1129–1136 | DOI | MR

[30] P.K. Mishra, P. Singh, S. Das, “Study of thermo-elastic cruciform crack with unequal arms in an orthotropic elastic plane”, Z. Angew. Math. Mech., 97:8 (2017), 886–894 | DOI | MR

[31] N. Lazarev, M. Grigoryev, “Optimal size of a rigid thin stiffener reinforcing a Timoshenko-type plate on the outer edge”, AIP Conference Proceedings, 1907, no. 14, 2017, 030033 | DOI

[32] B.L. Pelekh, Teoriya Obolochek s Konechnoy Sdvigovoy Zhestkost'yu, Nauk. dumka, Kiyev, 1973 (in Russian) | Zbl

[33] N.P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Numer. Analys. Appl., 4:4 (2011), 309–318 | DOI | MR | Zbl

[34] N.P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR | Zbl

[35] V.P. Mikhailov, Partial Differential Equations, Mir, M., 1978 | MR

[36] V.G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR | Zbl