Optimal control of a thin rigid stiffener for a model describing
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1485-1497

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of variational problems describing equilibrium of plates containing a crack and rigid thin stiffener on the outer boundary. Nonlinear conditions of the Signorini type on the crack faces are imposed. For this family of problems, we formulate an optimal problem with a control parameter determining the length of the thin rigid stiffener. Meanwhile, a cost functional is specified with the help of an arbitrary continuous functional in the solution space. The existence of the solution to the optimal control problem is proved. We state the continuous dependence of the solutions with respect to the stiffener's size parameter.
Keywords: variational inequality, optimal control problem, nonpenetration condition, crack, energy functional.
@article{SEMR_2018_15_a108,
     author = {N. P. Lazarev and S. Das and M. P. Grigoryev},
     title = {Optimal control of a thin rigid stiffener for a model describing},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1485--1497},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - S. Das
AU  - M. P. Grigoryev
TI  - Optimal control of a thin rigid stiffener for a model describing
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1485
EP  - 1497
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/
LA  - ru
ID  - SEMR_2018_15_a108
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A S. Das
%A M. P. Grigoryev
%T Optimal control of a thin rigid stiffener for a model describing
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1485-1497
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/
%G ru
%F SEMR_2018_15_a108
N. P. Lazarev; S. Das; M. P. Grigoryev. Optimal control of a thin rigid stiffener for a model describing. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1485-1497. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/