Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a108, author = {N. P. Lazarev and S. Das and M. P. Grigoryev}, title = {Optimal control of a thin rigid stiffener for a model describing}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1485--1497}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/} }
TY - JOUR AU - N. P. Lazarev AU - S. Das AU - M. P. Grigoryev TI - Optimal control of a thin rigid stiffener for a model describing JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1485 EP - 1497 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/ LA - ru ID - SEMR_2018_15_a108 ER -
%0 Journal Article %A N. P. Lazarev %A S. Das %A M. P. Grigoryev %T Optimal control of a thin rigid stiffener for a model describing %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1485-1497 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/ %G ru %F SEMR_2018_15_a108
N. P. Lazarev; S. Das; M. P. Grigoryev. Optimal control of a thin rigid stiffener for a model describing. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1485-1497. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a108/
[1] N.F. Morozov, Mathematical Problems of the Theory of Cracks, Nauka, M., 1984 (in Russian) | MR
[2] A.M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)
[3] A.M. Khludnev, “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A Solids, 32:1 (2012), 69–75 | DOI | MR | Zbl
[4] A.M. Khludnev, T.S. Popova, “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, Z. Angew. Math. Mech., 97:11 (2017), 1406–1417 | MR
[5] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000
[6] A.M. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl
[7] V.A. Kovtunenko, “Shape sensitivity of curvilinear cracks on interface to non-linear perturbations”, Z. Angew. Math. Phys., 54:3 (2003), 410–423 | DOI | MR | Zbl
[8] N.P. Lazarev, H. Itou, N.V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl
[9] V.V. Shcherbakov, “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR
[10] V.V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl
[11] A.M. Khludnev, V.V. Shcherbakov, “A note on crack propagation paths inside elastic bodies”, Applied Mathematics Letters, 79:1 (2018), 80–84 | DOI | MR
[12] E.V. Pyatkina, “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Indust. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl
[13] D. Knees, A. Schroder, “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Meth. Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl
[14] E. Rudoy, “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM-Math. Model. Num., 50:4 (2016), 995–1009 | DOI | MR | Zbl
[15] M. Hintermüller, V.A. Kovtunenko, “From shape variation to topological changes in constrained minimization: A velocity method-based concept”, Optim. Method Softw., 26:4–5 (2011), 513–532 | DOI | MR | Zbl
[16] V.A. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: The antiplane variational model”, Siam. J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[17] A. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. und Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl
[18] A.M. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl
[19] E.M. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:1 (2017), 19 | DOI | MR | Zbl
[20] A.M. Khludnev, A.A. Novonty, J. Sokolowsky, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids., 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[21] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl
[22] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 2018 | DOI | MR
[23] N.P. Lazarev, E.M. Rudoy, “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR
[24] N. Lazarev, T. Popova, G. Semenova, “Existence of an optimal size of a rigid inclusion for an equilibrium problem of a Timoshenko plate with Signorini-type boundary condition”, Journal of Inequalities and Application, 2016, 18 | DOI | MR
[25] F. Dal Corso, D. Bigoni, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full-field solution and asymptotics”, J. Mech. Phys. Solids, 56:3 (2008), 815–838 | DOI | MR | Zbl
[26] I.I. Ilina, V.V. Silvestrov, “Zadacha o tonkom zhestkom mezhfaznom vklyuchenii, otsoyedinivshemsya vdol' odnoy storony ot sredy”, Izvestiya RAN. Mekhanika tverdogo tela, 2005, no. 3, 153–166 (in Russian)
[27] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl
[28] Z.M. Xiao, B.J. Chen, “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, Int. J. Fract., 108:3 (2001), 193–205 | DOI
[29] P.K. Mishra, S. Das, M. Gupta, “Interaction between interfacial and sub-interfacial cracks in a composite media – Revisited”, Z. Angew. Math. Mech., 96:9 (2016), 1129–1136 | DOI | MR
[30] P.K. Mishra, P. Singh, S. Das, “Study of thermo-elastic cruciform crack with unequal arms in an orthotropic elastic plane”, Z. Angew. Math. Mech., 97:8 (2017), 886–894 | DOI | MR
[31] N. Lazarev, M. Grigoryev, “Optimal size of a rigid thin stiffener reinforcing a Timoshenko-type plate on the outer edge”, AIP Conference Proceedings, 1907, no. 14, 2017, 030033 | DOI
[32] B.L. Pelekh, Teoriya Obolochek s Konechnoy Sdvigovoy Zhestkost'yu, Nauk. dumka, Kiyev, 1973 (in Russian) | Zbl
[33] N.P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Numer. Analys. Appl., 4:4 (2011), 309–318 | DOI | MR | Zbl
[34] N.P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR | Zbl
[35] V.P. Mikhailov, Partial Differential Equations, Mir, M., 1978 | MR
[36] V.G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR | Zbl