Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a107, author = {E. P. Volokitin and V. M. Cheresiz}, title = {About the whole behavior of trajectories of {Darboux} systems with cubic}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1463--1484}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a107/} }
TY - JOUR AU - E. P. Volokitin AU - V. M. Cheresiz TI - About the whole behavior of trajectories of Darboux systems with cubic JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1463 EP - 1484 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a107/ LA - ru ID - SEMR_2018_15_a107 ER -
E. P. Volokitin; V. M. Cheresiz. About the whole behavior of trajectories of Darboux systems with cubic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1463-1484. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a107/
[1] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node”, J. Dif. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl
[2] E.P. Volokitin, V.M. Cheresiz, “Qualitative investigation of the planar polynomial Darboux-type systems”, Siberian Electronic Mathematical Reports, 13 (2016), 1170–1186 (Russian. English summary) | MR | Zbl
[3] E.P. Volokitin, V.M. Cheresiz, “Dynamics of the cubic Darboux systems”, Siberian Electronic Mathematical Reports, 14 (2017), 889–902 (Russian. English summary) | MR | Zbl
[4] Differential Equations, 2 (1968), 174–178 | MR | Zbl
[5] Ye Yan Qian, et al., Theory of Limit Cycles, Trans. Math. Monogr., 66, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl
[6] A. Cima, J. Llibre, “Algebraic and topological classification of the homogeneous cubic vector fields in the plane”, J. Math. Anal. Appl., 147:2 (1990), 420–448 | DOI | MR | Zbl
[7] Springer, Berlin–Heidelberg–New York, 1983 | MR | Zbl | Zbl
[8] F. Dumortier, J. Llibre, J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer, Berlin–Heidelberg–New York, 2006 | MR | Zbl