On some problems of optimal control
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1383-1409.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general method of computing optimal control for consumption of resources is developed. The method includes both normal and singular solution. According to the method the problem is subdivided into two independent tasks: 1) computation of the structure of optimal control; 2) computation of the switching moments of optimal control. The structure computation is based on the original method of constructing quasi-optimal control. And the control switching moments computes with the help of the relation found between the displacements of the initial conditions of the adjoint system and the displacements of the phase trajectory at the completion moment. Given the method of assignment of initial approximation. An iterative algorithm is developed, its characteristics being considered. The influence of system parameters and time of transfer on the structure of optimal control. The results of modeling and numerical computations are given.
Keywords: optimal control, speed, moving time, resource consumption, switching moments, iterative process, adjoint system, phase trajectory.
@article{SEMR_2018_15_a106,
     author = {V. M. Aleksandrov},
     title = {On some problems of optimal control},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1383--1409},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a106/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - On some problems of optimal control
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1383
EP  - 1409
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a106/
LA  - ru
ID  - SEMR_2018_15_a106
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T On some problems of optimal control
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1383-1409
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a106/
%G ru
%F SEMR_2018_15_a106
V. M. Aleksandrov. On some problems of optimal control. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1383-1409. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a106/

[1] L.S. Pontrjagin, V.G. Boltjansky, R.V. Gamkrelidze, E.F. Mishchenko, Mathematical theory of optimal processes, Nauka, M., 1976 | MR

[2] V.G. Boltjansky, Mathematical methods of optimal control, Nauka, M., 1969 | MR

[3] T. Singh, “Fuel/Time optimal control of the benchmark problem”, J. Guid. Control Dyn., 18:6 (1995), 1225–1231 | DOI | Zbl

[4] V.A. Ivanov, S.A. Kozhevnikov, “One problem of synthesis of optimal “fuel consumption” control of linear objects of the second order with control derivatives”, Reports RAS. Theory fnd control systems, 4 (1996), 77–83 | Zbl

[5] L.D. Dewell, J.L. Speyer, “Fuel-optimal periodic control and regulation in constrained hypersonic flight”, J. Guid. Control Dyn., 20:5 (1997), 923–932 | DOI | Zbl

[6] S.W. Liu, T. Singh, “Fuel/Time optimal control of spacecraft maneuvers”, J. Guid. Control Dyn., 20:2 (1997), 394–397 | DOI | MR | Zbl

[7] V.M. Aleksandrov, “Approximate solution of the linear problem at minimum resource consumption”, Comput. Math. Math. Phys., 39:3 (1999), 397–408 | MR | Zbl

[8] G.V. Shevchenko, “The method of finding the optimal minimum consumption of management resources for objects of a special kind”, Autometry, 42:2 (2006), 49–67

[9] V.M. Aleksandrov, “Optimal resource consumption control of linear systems”, Comput. Math. Math. Phys., 51:4 (2011), 520–536 | DOI | MR | Zbl

[10] R.P. Fedorenko, Approximate solution of optimal control problems, Nauka, M., 1978 | MR | Zbl

[11] A.A. Lyubushin, “On the application of modifications of the method of successive approximations for solving optimal control problems”, Comput. Math. Math. Phys., 22:1 (1982), 29–34 | DOI | MR | Zbl

[12] N.I. Grachev, Yu.G. Evtushenko, “Program library for solving optimal control problems”, Comput. Math. Math. Phys., 19:2 (1979), 99–119 | DOI | MR

[13] R. Gabasov, F.M. Kirillova, Constructive optimization methods, v. 2, Management task, Publishing House “University”, Minsk, 1984 | MR

[14] V.A. Srochko, Iterative vethods for solving optimal control problems, Fizmatlit, M., 2000

[15] Yu.S. Osipov, “Software packages: an approach to solving problems of positional control with incomplete information”, Russian Math. Surveys, 61:4 (2006), 611–661 | DOI | MR | Zbl

[16] V.M. Aleksandrov, “Calculation of optimal control in real time”, Comput. Math. Math. Phys., 52:10 (2012), 1351–1372 | DOI | MR | Zbl

[17] V.M. Aleksandrov, “Iterative method for real-time calculation of optimal control performance”, Siberian journal of computational mathematics, 10:1 (2007), 1–28 | Zbl

[18] V.M. Aleksandrov, V.A. Dykhta, “Approximate solution of the problem of minimizing resource consumption. II. Assessment of proximity of offices”, J. Appl. Industr. Math., 6:2 (2012), 135–144 | DOI | MR