Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a105, author = {V. N. Starovoitov}, title = {Initial boundary value problem for a nonlocal in time parabolic equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1311--1319}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a105/} }
TY - JOUR AU - V. N. Starovoitov TI - Initial boundary value problem for a nonlocal in time parabolic equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1311 EP - 1319 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a105/ LA - en ID - SEMR_2018_15_a105 ER -
V. N. Starovoitov. Initial boundary value problem for a nonlocal in time parabolic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1311-1319. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a105/
[1] V.N. Starovoitov, B.N. Starovoitova, “Modeling the dynamics of polymer chains in water solution. Application to sensor design”, Journal of Physics: Conference series, 894 (2017), 012088 | DOI
[2] C.V. Pao, “Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions”, Journal of Mathematical Analysis and Applications, 195:3 (1995), 702–718 | DOI | MR | Zbl
[3] V.V. Shelukhin, “A problem with time-averaged data for nonlinear parabolic equations”, Siberian Mathematical Journal, 32:2 (1991), 309–320 | DOI | MR | Zbl
[4] V.V. Shelukhin, “A variational principle for linear evolution problems nonlocal in time”, Siberian Mathematical Journal, 34:2 (1993), 369–384 | DOI | MR | Zbl
[5] A. Sh. Lyubanova, “On nonlocal problems for systems of parabolic equations”, J. Math. Anal. Appl., 421:2 (2015), 1767–1778 | DOI | MR | Zbl
[6] I. Ekeland, R. Témam, Convex analysis and variational inequalities, North-Holland, Amsterdam, 1976 | MR
[7] H. Gajewski, K. Gröger, K. Zacharias, “Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen”, Mathematische Lehrbücher und Monographien, v. II, Mathematische Monographien, 38, Abteilung, Akademie-Verlag, Berlin, 1974 | MR | Zbl