The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1216-1226

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the gas dynamics equations with the state equation of the monatomic gas. The equations admits a group of transformations with a 14-dimensional Lie algebra. We consider three-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. Invariant and partially invariant submodels of lowest-rank are constructed for each of subalgebras.
Keywords: gas dynamics equations, submodel, projective operator.
@article{SEMR_2018_15_a102,
     author = {R. F. Nikonorova},
     title = {The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1216--1226},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a102/}
}
TY  - JOUR
AU  - R. F. Nikonorova
TI  - The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1216
EP  - 1226
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a102/
LA  - ru
ID  - SEMR_2018_15_a102
ER  - 
%0 Journal Article
%A R. F. Nikonorova
%T The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1216-1226
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a102/
%G ru
%F SEMR_2018_15_a102
R. F. Nikonorova. The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1216-1226. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a102/