On methods to solve an inverse problems for a nonlinear differential equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 199-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a reverse time problem for a nonlinear differential equation. The exact solution is given to be a piecewise smooth function. We suggest an approach for constructing a stable approximate solution to the inverse problem taking into account the a priori information about the exact solution. We obtain sharp error estimates for the approximate solutions.
Keywords: operator equation, reverse time problem, regularization, error estimate.
@article{SEMR_2017_14_a85,
     author = {E. V. Tabarintseva},
     title = {On methods to solve an inverse problems for a nonlinear differential equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a85/}
}
TY  - JOUR
AU  - E. V. Tabarintseva
TI  - On methods to solve an inverse problems for a nonlinear differential equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 199
EP  - 209
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a85/
LA  - ru
ID  - SEMR_2017_14_a85
ER  - 
%0 Journal Article
%A E. V. Tabarintseva
%T On methods to solve an inverse problems for a nonlinear differential equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 199-209
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a85/
%G ru
%F SEMR_2017_14_a85
E. V. Tabarintseva. On methods to solve an inverse problems for a nonlinear differential equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 199-209. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a85/

[1] IA.B. Bakushinskii, “A general method of constructing regularizing algorithms for a linear ill-posed equation in Hilbert space”, Zh. Vychisl. Mat. mat. Fiz., 7:3 (1967), 672–677 | MR

[2] V.K. Ivanov, V.V. Vasin, V.P. Tanana, Theory of linear ill-posed problem and its applications, VSP, 2002 | MR

[3] V.P. Tanana, A.B. Bredikhina, T.S. Kamaltdinova, “On error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions”, Trudy IMM UrO RAN, 18, no. 1, 2012, 142–143

[4] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981 | MR | Zbl

[5] E.V. Tabarintseva, “An approach to solving an ill-posed problem for a nonlinear differential equation”, Trudy IMM UrO RAN, 21, no. 1, 2015, 231–237 | MR

[6] E.V. Tabarintseva, “On an estimate for the modulus of continuity of a nonlinear inverse problem”, Trudy IMM UrO RAN, 19, no. 1, 2013, 251–257 | MR

[7] S. Pereverzev, E. Schock, “On the adaptive selection of the parameter in regularization of ill-posed problems”, SIAM J. Numer. Anal., 43:5 (2005), 2060–2076 | DOI | MR | Zbl