Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a85, author = {E. V. Tabarintseva}, title = {On methods to solve an inverse problems for a nonlinear differential equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {199--209}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a85/} }
TY - JOUR AU - E. V. Tabarintseva TI - On methods to solve an inverse problems for a nonlinear differential equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 199 EP - 209 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a85/ LA - ru ID - SEMR_2017_14_a85 ER -
E. V. Tabarintseva. On methods to solve an inverse problems for a nonlinear differential equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 199-209. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a85/
[1] IA.B. Bakushinskii, “A general method of constructing regularizing algorithms for a linear ill-posed equation in Hilbert space”, Zh. Vychisl. Mat. mat. Fiz., 7:3 (1967), 672–677 | MR
[2] V.K. Ivanov, V.V. Vasin, V.P. Tanana, Theory of linear ill-posed problem and its applications, VSP, 2002 | MR
[3] V.P. Tanana, A.B. Bredikhina, T.S. Kamaltdinova, “On error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions”, Trudy IMM UrO RAN, 18, no. 1, 2012, 142–143
[4] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981 | MR | Zbl
[5] E.V. Tabarintseva, “An approach to solving an ill-posed problem for a nonlinear differential equation”, Trudy IMM UrO RAN, 21, no. 1, 2015, 231–237 | MR
[6] E.V. Tabarintseva, “On an estimate for the modulus of continuity of a nonlinear inverse problem”, Trudy IMM UrO RAN, 19, no. 1, 2013, 251–257 | MR
[7] S. Pereverzev, E. Schock, “On the adaptive selection of the parameter in regularization of ill-posed problems”, SIAM J. Numer. Anal., 43:5 (2005), 2060–2076 | DOI | MR | Zbl