Finite rings with Eulerian nilpotent graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 274-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all associative finite rings with Eulerian nilpotent graphs.
Keywords: associative ring, finite ring, nilpotent graph, Eulerian graph.
@article{SEMR_2017_14_a8,
     author = {A. S. Kuzmina and Yu. N. Maltsev},
     title = {Finite rings with {Eulerian} nilpotent graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {274--279},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a8/}
}
TY  - JOUR
AU  - A. S. Kuzmina
AU  - Yu. N. Maltsev
TI  - Finite rings with Eulerian nilpotent graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 274
EP  - 279
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a8/
LA  - ru
ID  - SEMR_2017_14_a8
ER  - 
%0 Journal Article
%A A. S. Kuzmina
%A Yu. N. Maltsev
%T Finite rings with Eulerian nilpotent graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 274-279
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a8/
%G ru
%F SEMR_2017_14_a8
A. S. Kuzmina; Yu. N. Maltsev. Finite rings with Eulerian nilpotent graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 274-279. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a8/

[1] S. Akbari, H. R. Maimani, S. Yassemi, “When zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270 (2003), 169–180 | DOI | MR | Zbl

[2] R. Belshoff, J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316 (2007), 471–480 | DOI | MR | Zbl

[3] A. S. Kuz'mina, Yu. N. Maltsev, “Nilpotent Finite Rings with Planar Zero-Divisor Graphs”, Asian-European J. Math., 1:4 (2008), 565–574 | DOI | MR | Zbl

[4] A. S. Kuzmina, “On finite non-nilpotent rings with planar zero-divisor graphs”, Discretnaya Matematika, 4 (2009), 60–75 (in Russian) | DOI | MR | Zbl

[5] A. S. Kuzmina, “Finite rings with Eulerian zero-divisor graphs”, J. of Algebra and Its Appl., 11:3 (2012), 551–559 | MR

[6] S. Akbari, A. Mohammadian, “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296 (2006), 462–479 | DOI | MR | Zbl

[7] A. S. Kuzmina, Yu. N. Maltsev, “Finite rings with some restrictions on zero-divisor graphs”, Izvestiya vyzov. Matematika, 2014, no. 12, 49–59 | MR

[8] A. S. Kuzmina, Yu. N. Maltsev, “On Finite Rings in Which Zero-Divisor Graphs Satisfy the Dirac's condition”, Lobachevskii Journal of Mathematics, 36:4 (2015), 376–384 | DOI | MR

[9] I. M. Isaev, A. S. Kuzmina, “On Connectivity of Zero-Divisor Graphs of Algebras”, Vestnik Altai State Pedagogical Academy. Natural sciences, 7 (2011), 7–10

[10] A. S. Kuzmina, “On structure of finite nilpotent rings with some restrictions on zero-divisor graphs”, Siberian Electronic Mathematical Reports, 12 (2015), 122–129 | Zbl

[11] Kuzmina A. S., “On Nilpotent Finite Alternative Rings with Planar Zero-Divisor Graphs”, Alg. Colloquium, 23:4 (2016), 657–661 | DOI | MR | Zbl

[12] P. Chen, “A kind of graph structure of rings”, Alg. Colloquium, 10 (2003), 229–238 | MR | Zbl

[13] A. Li, Q. Li, “A kind of graph structure on non-reduced rings”, Alg. Colloquium, 17:1 (2010), 173–180 | DOI | MR | Zbl

[14] A. Li, Q. Li, “A kind of graph structure on von-Neumann regular rings”, Int. J. of Algebra, 4:6 (2010), 291–302 | MR

[15] M. J. Nikmehr, S. Khojasteh, “On nilpotent graph of a ring”, Turkish J. of Math., 37 (2013), 553–559 | MR | Zbl

[16] A. Mahmoodi, “Nilpotent graphs of matrix algebras”, J. of Algebraic Structures and Their Appl., 1:2 (2014), 123–132

[17] A. S. Kuzmina, Yu. N. Maltsev, “Finite rings with regular nilpotent graphs”, Siberian Electronic Mathematical Reports, 12 (2015), 810–817 | Zbl

[18] R. Diestel, Graph theory, Novosibirsk, 2002 (in Russian)

[19] V. P. Elizarov, Finite rings, Gelios-ARV, M., 2006 (in Russian)

[20] N. Jacobson, Structure of rings, Colloquium Publications, 37, AMS, 1968 | MR

[21] N. J. Fine, I. N. Herstein, “The probability that a matrix be nilpotent”, Illinois J. Math., 2 (1958), 499–504 | MR | Zbl