Lattices of subclasses.~III
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 252-263

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for certain $Q$-universal quasivarieties $\mathbf{K}$, the lattice of $\mathbf{K}$-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain $Q$-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.
Keywords: Abelian group, differential groupoid, finite membership problem, graph, independent basis, quasi-identity, quasi-equational theory, quasivariety, $Q$-universal, undecidable theory.
@article{SEMR_2017_14_a7,
     author = {A. Basheyeva and A. Nurakunov and M. Schwidefsky and A. Zamojska-Dzienio},
     title = {Lattices of {subclasses.~III}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {252--263},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/}
}
TY  - JOUR
AU  - A. Basheyeva
AU  - A. Nurakunov
AU  - M. Schwidefsky
AU  - A. Zamojska-Dzienio
TI  - Lattices of subclasses.~III
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 252
EP  - 263
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/
LA  - en
ID  - SEMR_2017_14_a7
ER  - 
%0 Journal Article
%A A. Basheyeva
%A A. Nurakunov
%A M. Schwidefsky
%A A. Zamojska-Dzienio
%T Lattices of subclasses.~III
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 252-263
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/
%G en
%F SEMR_2017_14_a7
A. Basheyeva; A. Nurakunov; M. Schwidefsky; A. Zamojska-Dzienio. Lattices of subclasses.~III. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 252-263. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/