Lattices of subclasses.~III
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 252-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for certain $Q$-universal quasivarieties $\mathbf{K}$, the lattice of $\mathbf{K}$-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain $Q$-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.
Keywords: Abelian group, differential groupoid, finite membership problem, graph, independent basis, quasi-identity, quasi-equational theory, quasivariety, $Q$-universal, undecidable theory.
@article{SEMR_2017_14_a7,
     author = {A. Basheyeva and A. Nurakunov and M. Schwidefsky and A. Zamojska-Dzienio},
     title = {Lattices of {subclasses.~III}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {252--263},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/}
}
TY  - JOUR
AU  - A. Basheyeva
AU  - A. Nurakunov
AU  - M. Schwidefsky
AU  - A. Zamojska-Dzienio
TI  - Lattices of subclasses.~III
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 252
EP  - 263
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/
LA  - en
ID  - SEMR_2017_14_a7
ER  - 
%0 Journal Article
%A A. Basheyeva
%A A. Nurakunov
%A M. Schwidefsky
%A A. Zamojska-Dzienio
%T Lattices of subclasses.~III
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 252-263
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/
%G en
%F SEMR_2017_14_a7
A. Basheyeva; A. Nurakunov; M. Schwidefsky; A. Zamojska-Dzienio. Lattices of subclasses.~III. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 252-263. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a7/

[1] M. E. Adams, W. Dziobiak, “$Q$-universal quasivarieties of algebras”, Proc. Amer. Math. Soc., 120 (1994), 1053–1059 | MR | Zbl

[2] M. E. Adams, W. Dziobiak, “Lattice of quasivarieties of $3$-element algebras”, J. Algebra, 166 (1994), 181–210 | DOI | MR | Zbl

[3] M. E. Adams, W. Dziobiak, “Quasivarieties of distributive lattices with a quantifier”, Discrete Math., 135 (1994), 15–28 | DOI | MR | Zbl

[4] M. E. Adams, W. Dziobiak, “Joins of minimal quasivarieties”, Studia Logica, 54 (1995), 371–389 | DOI | MR | Zbl

[5] M. E. Adams, W. Dziobiak, “Finite-to-finite universal quasivarieties are $Q$-universal”, Algebra Universalis, 46 (2001), 253–283 | DOI | MR | Zbl

[6] M. E. Adams, W. Dziobiak, “The lattice of quasivarieties of undirected graphs”, Algebra Universalis, 47 (2002), 7–11 | DOI | MR | Zbl

[7] M. E. Adams, W. Dziobiak, “$Q$-universal varieties of bounded lattices”, Algebra Universalis, 48 (2002), 333–356 | DOI | MR | Zbl

[8] M. E. Adams, W. Dziobiak, “Quasivarieties of idempotent semigroups”, Internat. J. Algebra Comput., 13 (2003), 733–752 | DOI | MR | Zbl

[9] M. E. Adams, W. Dziobiak, M. Gould, J. Schmid, “Quasivarieties of pseuocomplemented semilattices”, Fund. Math., 146 (1995), 295–312 | MR | Zbl

[10] M. E. Adams, V. Koubek, J. Sichler, “Homomorphisms and endomorphisms of distributive lattices”, Houston J. Math., 11 (1985), 129–145 | MR | Zbl

[11] M. E. Adams, J. Sichler, “Homomorphisms of unary algebras with a given quotient”, Algebra Universalis, 27 (1990), 194–219 | DOI | MR | Zbl

[12] G. Birkhoff, “Universal algebra”, Proceedings of the First Canadian Mathematical Congress (Montreal, 1945), The University of Toronto Press, Toronto, 1946, 310–326 | MR

[13] M. Demlová, V. Koubek, “Weak $\mathrm{alg}$-universality and $Q$-universality of semigroup quasivarieties”, Comment. Math. Univ. Carolin., 46:2 (2005), 257–279 | MR | Zbl

[14] W. Dziobiak, “On subquasivariety lattices of some varieties related with distributive $p$-algebras”, Algebra Universalis, 21 (1985), 62–67 | DOI | MR | Zbl

[15] W. Dziobiak, Selected topics in quasivarieties of algebraic systems, Manuscript of the lecture notes delivered at the Workshop on Computational Algebra and Applications to Semigroup Theory (Center of Algebra of Lisbon University, Portugal, 17–21 November, 1997), 61 pp.

[16] V. A. Gorbunov, “Structure of lattices of varieties and of lattices of quasivarieties: similarity and difference. II”, Algebra and Logic, 34 (1995), 203–218 | DOI | MR | Zbl

[17] Plenum, New York, 1998 | MR | Zbl

[18] V. A. Gorbunov, V. I. Tumanov, “Structure of lattices of quasivarieties”, Proceedings of the Institute of Mathematics SB RAS, 2 (1982), 12–44 | MR | Zbl

[19] V. K. Kartashov, “Quasivarieties of unary algebras with a finite number of cycles”, Algebra and Logic, 19 (1980), 106–120 | DOI | MR

[20] A. V. Kartashova, “Antivarieties of unars”, Algebra and Logic, 50 (2011), 357–364 | DOI | MR | Zbl

[21] V. Koubek, J. Sichler, “Universal varieties of semigroups”, J. Austral. Math. Soc. (Series A), 36 (1984), 143–152 | DOI | MR | Zbl

[22] A. V. Kravchenko, “On lattice complexity of quasivarieties of graphs and endographs”, Algebra and Logic, 36 (1997), 164–168 | DOI | MR | Zbl

[23] A. V. Kravchenko, “Complexity of quasivariety lattices for varieties of unary algebras”, Siberian Advances in Mathematics, 12 (2002), 63–76 | MR

[24] A. V. Kravchenko, “$Q$-universal quasivarieties of graphs”, Algebra and Logic, 41 (2002), 173–181 | DOI | MR | Zbl

[25] A. V. Kravchenko, “On the lattices of quasivarieties of differential groupoids”, Comment. Math. Univ. Carolin., 49 (2008), 11–17 | MR | Zbl

[26] A. V. Kravchenko, “Complexity of quasivariety lattices for varieties of unary algebras. II”, Siberian Electronic Mathematical Reports, 13 (2016), 388–394 (Russian, English summary) http://semr.math.nsc.ru/v13/p388-394.pdf | MR | Zbl

[27] A. V. Kravchenko, A. V. Yakovlev, Quasivarieties of graphs and independent axiomatizability, submitted for publication in 2017

[28] A. I. Maltsev, “Borderline problems of algebra and logic”, Proceedings of the International Mathematical Congress (Moscow, 1966), Mir, M., 1968, 217–231 | MR

[29] Springer-Verlag, 1973 | MR | MR | Zbl | Zbl

[30] A. M. Nurakunov, “Unreasonable lattices of quasivarieties”, Internat. J. Algebra Comput., 22:3 (2012), 1–17 | DOI | MR

[31] A. M. Nurakunov, “Quasivariety lattices of pointed Abelian groups”, Algebra and Logic, 53 (2014), 238–257 | DOI | MR | Zbl

[32] A. M. Nurakunov, M. V. Semenova, A. Zamojska-Dzienio, “On lattices connected with various types of classes of algebraic structures”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154 (2012), 167–179 | MR

[33] A. B. Romanowska, B. Roszkowska, “On some groupoid modes”, Demonstratio Math., 20 (1987), 277–290 | MR | Zbl

[34] A. B. Romanowska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl

[35] M. V. Sapir, “The lattice of quasivarieties of semigroups”, Algebra Universalis, 21 (1985), 172–180 | DOI | MR | Zbl

[36] M. V. Schwidefsky, “Complexity of quasivariety lattices”, Algebra and Logic, 54 (2015), 245–257 | DOI | MR | Zbl

[37] M. V. Semenova, A. Zamojska-Dzienio, “Lattices of subclasses”, Siberian Math. J., 53 (2012), 889–905 | DOI | MR | Zbl

[38] M. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses, II”, Internat. J. Algebra Comput., 24 (2014), 1099–1126 | DOI | MR | Zbl

[39] M. S. Sheremet, “Quasivarieties of Cantor algebras”, Algebra Universalis, 46 (2001), 193–201 | DOI | MR | Zbl

[40] S. V. Sizyǐ, “Quasivarieties of graphs”, Siberian Math. J., 35 (1994), 783–794 | DOI | MR | Zbl

[41] M. P. Tropin, “Embedding of a free lattice into the lattice of quasivarieties of distributive lattices with pseudocomplementation”, Algebra and Logic, 22 (1983), 113–119 | DOI | MR | Zbl

[42] M. P. Tropin, “Bases of quasi-identities of finite distributive $p$-algebras”, Algebra and Logic, 26 (1987), 267–283 | DOI | MR | Zbl

[43] M. P. Tropin, “Finite pseudo-Boolean and topological Boolean algebras having no independent basis of quasi-identities”, Algebra and Logic, 27 (1988), 57–69 | DOI | MR | Zbl

[44] V. I. Tumanov, “Finite lattices having no independent basis of quasi-identities”, Math. Notes, 36 (1984), 811–815 | DOI | MR | Zbl