@article{SEMR_2017_14_a63,
author = {A. P. Kopylov},
title = {On the unique determination of domains by the condition of the local isometry of the boundaries in the relative {metrics.~II}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {986--993},
year = {2017},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/}
}
TY - JOUR AU - A. P. Kopylov TI - On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics. II JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 986 EP - 993 VL - 14 UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/ LA - en ID - SEMR_2017_14_a63 ER -
%0 Journal Article %A A. P. Kopylov %T On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics. II %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 986-993 %V 14 %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/ %G en %F SEMR_2017_14_a63
A. P. Kopylov. On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics. II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 986-993. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/
[1] A. P. Kopylov, “On the unique determination of domains in Euclidean spaces”, J. Math. Sciences, 153:6 (2008), 869–898 | DOI | MR | Zbl
[2] M. V. Korobkov, “Necessary and sufficient conditions for the unique determination of plane domains”, Dokl. Math., 76 (2007), 722–723 | DOI | MR | Zbl
[3] M. V. Korobkov, “Necessary and sufficient conditions for unique determination of plane domains”, Siberian Math. J., 49:3 (2008), 436–451 | DOI | MR | Zbl
[4] M. V. Korobkov, “A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains”, Siberian Adv. Math., 20:4 (2010), 256–284 | DOI | MR
[5] M. K. Borovikova, “On the isometry of polygonal domains with boundaries locally isometric in relative metrics”, Siberian Math. J., 33:4 (1992), 571–580 | DOI | MR | Zbl
[6] V. A. Aleksandrov, “Isometry of domains in $\mathbb R^n$ and relative isometry of their boundaries”, Siberian Math. J., 25:3 (1984), 339–347 | DOI | MR | Zbl
[7] A. P. Kopylov, “On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics”, Sib. Èlektron. Mat. Izv., 14 (2017), 59–72 | MR | Zbl
[8] F. Leja, W. Wilkosz, “Sur une propriété des domaines concaves”, Ann. Soc. Polon. Math., 2 (1924), 222–224 | MR | Zbl
[9] Yu. D. Burago, V. A. Zalgaller, “Sufficient conditions for convexity”, Problems of Global Geometry, Zap. Nauchn. Sem. LOMI, 45, Nauka, L., 1974, 3–53 | MR
[10] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, AMS, Providence, RI, 1973 | MR | Zbl
[11] A. P. Kopylov, “Unique determination of domains by the condition of local isometry of boundaries in the relative metrics”, Dokl. Math., 78:2 (2008), 746–747 | DOI | MR | Zbl