On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 986-993.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the theorem on the unique determination of a strictly convex domain in $\mathbb R^n$, where $n \ge 2$, in the class of all $n$-dimensional domains by the condition of the local isometry of the Hausdorff boundaries in the relative metrics, which is a generalization of A. D. Aleksandrov's theorem on the unique determination of a strictly convex domain by the condition of the (global) isometry of the boundaries in the relative metrics. We also prove that, in the cases of a plane domain $U$ with nonsmooth boundary and of a three-dimensional domain $A$ with smooth boundary, the convexity of the domain is no longer necessary for its unique determination by the condition of the local isometry of the boundaries in the relative metrics.
Keywords: intrinsic metric, relative metric of the boundary, local isometry of the boundaries, strict convexity.
@article{SEMR_2017_14_a63,
     author = {A. P. Kopylov},
     title = {On the unique determination of domains by the condition of the local isometry of the boundaries in the relative {metrics.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {986--993},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/}
}
TY  - JOUR
AU  - A. P. Kopylov
TI  - On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 986
EP  - 993
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/
LA  - en
ID  - SEMR_2017_14_a63
ER  - 
%0 Journal Article
%A A. P. Kopylov
%T On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 986-993
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/
%G en
%F SEMR_2017_14_a63
A. P. Kopylov. On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 986-993. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/

[1] A. P. Kopylov, “On the unique determination of domains in Euclidean spaces”, J. Math. Sciences, 153:6 (2008), 869–898 | DOI | MR | Zbl

[2] M. V. Korobkov, “Necessary and sufficient conditions for the unique determination of plane domains”, Dokl. Math., 76 (2007), 722–723 | DOI | MR | Zbl

[3] M. V. Korobkov, “Necessary and sufficient conditions for unique determination of plane domains”, Siberian Math. J., 49:3 (2008), 436–451 | DOI | MR | Zbl

[4] M. V. Korobkov, “A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains”, Siberian Adv. Math., 20:4 (2010), 256–284 | DOI | MR

[5] M. K. Borovikova, “On the isometry of polygonal domains with boundaries locally isometric in relative metrics”, Siberian Math. J., 33:4 (1992), 571–580 | DOI | MR | Zbl

[6] V. A. Aleksandrov, “Isometry of domains in $\mathbb R^n$ and relative isometry of their boundaries”, Siberian Math. J., 25:3 (1984), 339–347 | DOI | MR | Zbl

[7] A. P. Kopylov, “On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics”, Sib. Èlektron. Mat. Izv., 14 (2017), 59–72 | MR | Zbl

[8] F. Leja, W. Wilkosz, “Sur une propriété des domaines concaves”, Ann. Soc. Polon. Math., 2 (1924), 222–224 | MR | Zbl

[9] Yu. D. Burago, V. A. Zalgaller, “Sufficient conditions for convexity”, Problems of Global Geometry, Zap. Nauchn. Sem. LOMI, 45, Nauka, L., 1974, 3–53 | MR

[10] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, AMS, Providence, RI, 1973 | MR | Zbl

[11] A. P. Kopylov, “Unique determination of domains by the condition of local isometry of boundaries in the relative metrics”, Dokl. Math., 78:2 (2008), 746–747 | DOI | MR | Zbl