Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a63, author = {A. P. Kopylov}, title = {On the unique determination of domains by the condition of the local isometry of the boundaries in the relative {metrics.~II}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {986--993}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/} }
TY - JOUR AU - A. P. Kopylov TI - On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 986 EP - 993 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/ LA - en ID - SEMR_2017_14_a63 ER -
%0 Journal Article %A A. P. Kopylov %T On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 986-993 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/ %G en %F SEMR_2017_14_a63
A. P. Kopylov. On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 986-993. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a63/
[1] A. P. Kopylov, “On the unique determination of domains in Euclidean spaces”, J. Math. Sciences, 153:6 (2008), 869–898 | DOI | MR | Zbl
[2] M. V. Korobkov, “Necessary and sufficient conditions for the unique determination of plane domains”, Dokl. Math., 76 (2007), 722–723 | DOI | MR | Zbl
[3] M. V. Korobkov, “Necessary and sufficient conditions for unique determination of plane domains”, Siberian Math. J., 49:3 (2008), 436–451 | DOI | MR | Zbl
[4] M. V. Korobkov, “A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains”, Siberian Adv. Math., 20:4 (2010), 256–284 | DOI | MR
[5] M. K. Borovikova, “On the isometry of polygonal domains with boundaries locally isometric in relative metrics”, Siberian Math. J., 33:4 (1992), 571–580 | DOI | MR | Zbl
[6] V. A. Aleksandrov, “Isometry of domains in $\mathbb R^n$ and relative isometry of their boundaries”, Siberian Math. J., 25:3 (1984), 339–347 | DOI | MR | Zbl
[7] A. P. Kopylov, “On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics”, Sib. Èlektron. Mat. Izv., 14 (2017), 59–72 | MR | Zbl
[8] F. Leja, W. Wilkosz, “Sur une propriété des domaines concaves”, Ann. Soc. Polon. Math., 2 (1924), 222–224 | MR | Zbl
[9] Yu. D. Burago, V. A. Zalgaller, “Sufficient conditions for convexity”, Problems of Global Geometry, Zap. Nauchn. Sem. LOMI, 45, Nauka, L., 1974, 3–53 | MR
[10] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, AMS, Providence, RI, 1973 | MR | Zbl
[11] A. P. Kopylov, “Unique determination of domains by the condition of local isometry of boundaries in the relative metrics”, Dokl. Math., 78:2 (2008), 746–747 | DOI | MR | Zbl