Self-similar dendrites generated by polygonal systems in the plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 737-751.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of self-similar dendrites in $\mathbb{R}^2$ generated by system $\mathcal{S}$ of similarity maps of a convex polygon $P$ and find upper bound for the order of their ramification points, show that such dendrites are continua of bounded turning and prove Hölder continuity of their isomorphisms.
Keywords: self-similar set, post-critically finite sets.
Mots-clés : dendrite, ramification point
@article{SEMR_2017_14_a62,
     author = {M. Samuel and A. Tetenov and D. Vaulin},
     title = {Self-similar dendrites generated by polygonal systems in the plane},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {737--751},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/}
}
TY  - JOUR
AU  - M. Samuel
AU  - A. Tetenov
AU  - D. Vaulin
TI  - Self-similar dendrites generated by polygonal systems in the plane
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 737
EP  - 751
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/
LA  - en
ID  - SEMR_2017_14_a62
ER  - 
%0 Journal Article
%A M. Samuel
%A A. Tetenov
%A D. Vaulin
%T Self-similar dendrites generated by polygonal systems in the plane
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 737-751
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/
%G en
%F SEMR_2017_14_a62
M. Samuel; A. Tetenov; D. Vaulin. Self-similar dendrites generated by polygonal systems in the plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 737-751. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/

[1] V. V. Aseev, A. V. Tetenov, A. S. Kravchenko, “On Self-Similar Jordan Curves on the Plane”, Siberian Mathematical Journal, 44:3 (2003), 379–386 | DOI | MR | Zbl

[2] C. Bandt, J. Stahnke, Self-similar sets 6. Interior distance on deterministic fractals, preprint, Greifswald, 1990

[3] C. Bandt, K. Keller, “Self-similar sets 2. A simple approach to the topological structure of fractals”, Math. Nachrichten, 154 (1991), 27–39 | DOI | MR | Zbl

[4] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988 | MR | Zbl

[5] J. Charatonik, W. Charatonik, “Dendrites”, Aportaciones Mat. Comun., 22 (1998), 227–253 | MR | Zbl

[6] D. Croydon, Random fractal dendrites, Ph.D. thesis, St. Cross College, University of Oxford, Trinity, 2006

[7] D. Dumitru, A. Mihail, “Attractors of iterated function systems and associated graphs”, Kodai Math. J., 37 (2014), 481–491 | DOI | MR | Zbl

[8] M. Hata, “On the structure of self-similar sets”, Japan. J. Appl. Math., 2 (1985), 381–414 | DOI | MR | Zbl

[9] J. Kigami, “Harmonic calculus on limits of networks and its application to dendrites”, J. Funct. Anal., 128:1 (1995), 48–86 | DOI | MR | Zbl

[10] J. Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, 143, Cambridge University Press, 2001 | MR | Zbl

[11] T. Kumagai, “Regularity, closedness, and spectral dimension of the Dirichlet forms on p.c.f. self-similar sets”, J. Math. Kyoto Univ., 33 (1993), 765–786 | DOI | MR | Zbl

[12] K. Kuratowski, Topology, v. 1, Academic Press, New York; PWN, 1966 | MR | Zbl

[13] D. Mekhontsev, Fractracer, 3D object designer, , 2015 http://fractracer.com

[14] D. Mekhontsev, IFSTile, , 2017 http://ifstile.com

[15] S. B. Nadler, Jr., Continuum theory: an introduction, Marcel Dekker, Inc., New York, 1992 | MR | Zbl

[16] R. S. Strichartz, “Isoperimetric estimates on Sierpinski gasket type fractals”, Trans. Amer. Math. Soc., 351:5 (1999), 1705–1752 | DOI | MR | Zbl

[17] A. V. Tetenov, “Self-similar Jordan arcs and graph-oriented IFS”, Siberian Math. Journal, 47:5 (2006), 1147–1153 | DOI | MR

[18] P. Tukia, J. Väisälä, “Quasisymmetric embeddings of metric spaces”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 5:1 (1980), 97–114 | DOI | MR | Zbl

[19] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, Providence, 1942 ; reprinted with corrections, 1971 | MR | Zbl

[20] R. Zeller, Branching Dynamical Systems and Slices through Fractals, Ph. D. thesis, University of Greifswald, 2015