Self-similar dendrites generated by polygonal systems in the plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 737-751

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of self-similar dendrites in $\mathbb{R}^2$ generated by system $\mathcal{S}$ of similarity maps of a convex polygon $P$ and find upper bound for the order of their ramification points, show that such dendrites are continua of bounded turning and prove Hölder continuity of their isomorphisms.
Keywords: self-similar set, post-critically finite sets.
Mots-clés : dendrite, ramification point
@article{SEMR_2017_14_a62,
     author = {M. Samuel and A. Tetenov and D. Vaulin},
     title = {Self-similar dendrites generated by polygonal systems in the plane},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {737--751},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/}
}
TY  - JOUR
AU  - M. Samuel
AU  - A. Tetenov
AU  - D. Vaulin
TI  - Self-similar dendrites generated by polygonal systems in the plane
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 737
EP  - 751
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/
LA  - en
ID  - SEMR_2017_14_a62
ER  - 
%0 Journal Article
%A M. Samuel
%A A. Tetenov
%A D. Vaulin
%T Self-similar dendrites generated by polygonal systems in the plane
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 737-751
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/
%G en
%F SEMR_2017_14_a62
M. Samuel; A. Tetenov; D. Vaulin. Self-similar dendrites generated by polygonal systems in the plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 737-751. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a62/