On attractors of iterated function systems in uniform spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 151-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove Hutchinson's theorem for uniform spaces, that a finite system $\mathcal{S}$ of $\mathcal{B}$-contractions in complete, well-chained, Hausdorff uniform space defines unique compact attractor.
Keywords: self-similar set, uniform space, $\mathcal{B}$-contraction, asymptotical regularity.
@article{SEMR_2017_14_a58,
     author = {M. Samuel and A. V. Tetenov},
     title = {On attractors of iterated function systems in uniform spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {151--155},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a58/}
}
TY  - JOUR
AU  - M. Samuel
AU  - A. V. Tetenov
TI  - On attractors of iterated function systems in uniform spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 151
EP  - 155
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a58/
LA  - en
ID  - SEMR_2017_14_a58
ER  - 
%0 Journal Article
%A M. Samuel
%A A. V. Tetenov
%T On attractors of iterated function systems in uniform spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 151-155
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a58/
%G en
%F SEMR_2017_14_a58
M. Samuel; A. V. Tetenov. On attractors of iterated function systems in uniform spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 151-155. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a58/

[1] W. J. Charatonik, A. Dilks, “On self-homeomorphic spaces”, Topology Appl., 55:3 (1994), 215–238 | DOI | MR | Zbl

[2] D. Dumitru, “Attractors of topological iterated function system”, Annals of Spiru Haret University: Mathematics-Informatics series, 8:2 (2012), 11–16

[3] D. Dumitru, L. Ioana, R. Sfetcu, F. Strobin, “Topological version of generalized (infinite) iterated function systems”, Chaos, Solitons Fractals, 71:2 (2015), 78–90 | DOI | MR | Zbl

[4] L. Bartholdi, R. I. Grigorchuk, V. V. Nekrashevych, From fractal groups to fractal sets, 2002, arXiv: math.GR/0202001 | MR

[5] J. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[6] A. Kameyama, “Self-Similar Sets from the Topological Point of View”, Japan J. Indust. Appl. Math., 10 (1993), 85–95 | DOI | MR | Zbl

[7] A. Mihail, “A topological version of iterated function systems”, An. Stiint. Univ. Al. I. Cuza, Ia si, (S.N.), Matematica, 58:1 (2012), 2012 | MR

[8] W. W. Taylor, “Fixed-point theorems for nonexpansive mappings in linear topological space”, J. Math. Anal. Appl., 40 (1972), 164–173 | DOI | MR | Zbl

[9] A. V. Tetenov, “Semigroups satisfying P-condition and topological self-similar sets”, Siberian Electr. Math. Reports, 7 (2010), 461–464 | MR | Zbl