Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a51, author = {A. I. Sakhanenko and S. G. Foss}, title = {On a structure of a conditioned random walk on the integers with bounded local times}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1265--1278}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a51/} }
TY - JOUR AU - A. I. Sakhanenko AU - S. G. Foss TI - On a structure of a conditioned random walk on the integers with bounded local times JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1265 EP - 1278 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a51/ LA - ru ID - SEMR_2017_14_a51 ER -
%0 Journal Article %A A. I. Sakhanenko %A S. G. Foss %T On a structure of a conditioned random walk on the integers with bounded local times %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1265-1278 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a51/ %G ru %F SEMR_2017_14_a51
A. I. Sakhanenko; S. G. Foss. On a structure of a conditioned random walk on the integers with bounded local times. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1265-1278. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a51/
[1] I. Benjamini, N. Berectycki, “Random paths with bounded local time”, Journal of the European Mathematical Society, 12:4 (2010), 819–854 | DOI | MR | Zbl
[2] I. Benjamini, N. Berectycki, “An integral test for the transience of a Brownian path with limited local time”, Annales de l'Institut Henri Poincare — Probabilites et Statistiques, 47:2 (2011), 539–558 | DOI | MR | Zbl
[3] N. Berestycki, P. Moerters, N. Sidorova, A conditioning principle for Galton-Watson trees, arXiv: 1006.2315 [math.PR]
[4] M. Kolb, M. Savov, Transience and recurrence of a Brownian path with limited local time and its repulsion envelope, arXiv: 1312.4131 [math.PR] | MR