Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a50, author = {V. A. Vatutin and V. A. Topchii}, title = {Moments of multitype critical {Bellman--Harris} processes in which tails of life-length distributions of particles have different orders}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1248--1264}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a50/} }
TY - JOUR AU - V. A. Vatutin AU - V. A. Topchii TI - Moments of multitype critical Bellman--Harris processes in which tails of life-length distributions of particles have different orders JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1248 EP - 1264 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a50/ LA - ru ID - SEMR_2017_14_a50 ER -
%0 Journal Article %A V. A. Vatutin %A V. A. Topchii %T Moments of multitype critical Bellman--Harris processes in which tails of life-length distributions of particles have different orders %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1248-1264 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a50/ %G ru %F SEMR_2017_14_a50
V. A. Vatutin; V. A. Topchii. Moments of multitype critical Bellman--Harris processes in which tails of life-length distributions of particles have different orders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1248-1264. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a50/
[1] Verzweigungsprozesse, Akademie Verlag, Berlin, 1974 | MR | MR | Zbl | Zbl
[2] K.B. Athreya, P.E. Ney, Branching processes, Springer, Berlin, 1972 | MR | Zbl
[3] M. I. Goldstein, “Critical age-dependent branching processes: Single and multitype”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 17 (1971), 74–88 | DOI | MR | Zbl
[4] V.A. Vatutin, “Discrete limit distributions of the number of particles in a Bellman–Harris branching process with several types of particles”, Theory Probab. Appl., 24:3 (1979), 509–520 | DOI | MR
[5] V.A. Vatutin, “On a class of the critical multitype Bellman–Harris branching processes”, Theory Probab. Appl., 25:4 (1981), 760–771 | DOI | MR | Zbl
[6] V.A. Vatutin, V.A. Topchii, “Critical Bellman–Harris branching processes with long-living particles”, Proceedings of the Steklov Institute of Mathematics, 282:1 (2013), 243–272 | DOI | MR | Zbl
[7] V. Vatutin, A. Iksanov, V. Topchii, “A Two-Type Bellman–Harris process initiated by a large number of particles”, Acta Applicandae Mathematicae, 138:1 (2015), 279–312 | DOI | MR | Zbl
[8] V.A. Vatutin, V.A. Topchii, “Catalytic branching random walks in $\mathbb{Z}^d$ with branching at the origin”, Siberian Advances in Mathematics, 23:2 (2013), 123–153 | DOI | MR
[9] V.A. Vatutin, V.A. Topchii, “A key renewal theorem for heavy tail distributions with $\beta \in (0,0.5]$”, Theory Probab. Appl., 58:2 (2014), 333–342 | DOI | MR | Zbl
[10] V.A. Topchii, “Two-dimensional renewal theorems with weak moment conditions and critical Bellman–Harris branching processes”, Discrete Mathematics and Applications, 26:1 (2016), 51–69 | MR
[11] V.A. Topchii, “Renewal matrix connected with branching process having life-length tails of different order”, Mathematical Proceedings (Matematicheskie trudy), 20:2 (2017), 139–192 (Russian)
[12] F.R. Gantmacher, The Theory of Matrices, Nauka, M., 1967 (Russian) | MR
[13] W. Feller, An introduction to probability theory and its applications, v. II, Wiley, New York, 1966 | MR | Zbl
[14] V.A. Il'in, E.G. Poznyak, Linear Algebra, Nauka-Fizmatlit, M., 1999 (Russian) | MR
[15] G.M. Fikhtengol'ts, A Course in Differential and Integral Calculus, v. I, Nauka, M., 1966 (Russian)