Existence of explicit asymptotically normal estimators in a multiple logarithmic regression problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 972-979

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and investigate a class of explicit estimators for an unknown multidimensional parameter in a logarithmic regression problem. We present general conditions for these estimators to be asymptotically normal. It is the fourth class of non-linear regression problems for which such explicit estimators are found.
Keywords: multiple logarithmic regression, difficulties in the least squares method, explicit estimators of the parameters, asymptotically normal estimators.
@article{SEMR_2017_14_a48,
     author = {A. Koldaeva and A. Sakhanenko},
     title = {Existence of explicit asymptotically normal estimators in a multiple logarithmic regression problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {972--979},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a48/}
}
TY  - JOUR
AU  - A. Koldaeva
AU  - A. Sakhanenko
TI  - Existence of explicit asymptotically normal estimators in a multiple logarithmic regression problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 972
EP  - 979
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a48/
LA  - en
ID  - SEMR_2017_14_a48
ER  - 
%0 Journal Article
%A A. Koldaeva
%A A. Sakhanenko
%T Existence of explicit asymptotically normal estimators in a multiple logarithmic regression problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 972-979
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a48/
%G en
%F SEMR_2017_14_a48
A. Koldaeva; A. Sakhanenko. Existence of explicit asymptotically normal estimators in a multiple logarithmic regression problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 972-979. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a48/