On finite rings in which nilpotent graphs satisfy the Dirac’s condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1373-1379.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all associative finite rings in which nilpotent graphs satisfy the Dirac’s condition.
Keywords: associative ring, finite ring, nilpotent graph, the Dirac’s theorem.
@article{SEMR_2017_14_a42,
     author = {Yu. N. Maltsev and A. S. Monastyreva},
     title = {On finite rings in which nilpotent graphs satisfy the {Dirac{\textquoteright}s} condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1373--1379},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/}
}
TY  - JOUR
AU  - Yu. N. Maltsev
AU  - A. S. Monastyreva
TI  - On finite rings in which nilpotent graphs satisfy the Dirac’s condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1373
EP  - 1379
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/
LA  - ru
ID  - SEMR_2017_14_a42
ER  - 
%0 Journal Article
%A Yu. N. Maltsev
%A A. S. Monastyreva
%T On finite rings in which nilpotent graphs satisfy the Dirac’s condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1373-1379
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/
%G ru
%F SEMR_2017_14_a42
Yu. N. Maltsev; A. S. Monastyreva. On finite rings in which nilpotent graphs satisfy the Dirac’s condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1373-1379. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/

[1] A.S. Kuzmina, Yu.N. Maltsev, “Finite rings with some restrictions on zero-divisor graphs”, Izvestiya vyzov. Matematika, 2014, no. 12, 49–59 | MR

[2] A.S. Kuzmina, Yu.N. Maltsev, “On Finite Rings in Which Zero-Divisor Graphs Satisfy the Dirac's condition”, Lobachevskii Journal of Mathematics, 36:4 (2015), 375–383 | DOI | MR | Zbl

[3] P. Chen, “A kind of graph structure of rings”, Alg. Colloquium, 10:2 (2003), 229–238 | MR | Zbl

[4] A. Li, Q. Li, “A kind of graph structure on non-reduced rings”, Alg. Colloquium, 17:1 (2010), 173–180 | DOI | MR | Zbl

[5] A. Li, Q. Li, “A kind of graph structure on von-Neumann regular rings”, Int. J. of Algebra, 4:6 (2010), 291–302 | MR

[6] M.J. Nikmehr, S. Khojasteh, “On nilpotent graph of a ring”, Turkish J. of Math., 37:4 (2013), 553–559 | MR | Zbl

[7] A. Mahmoodi, “Nilpotent graphs of matrix algebras”, J. of Algebraic Structures and Their Appl., 1:2 (2014), 123–132

[8] A.S. Kuzmina, Yu.N. Maltsev, “Finite rings with regular nilpotent graphs”, Siberian Electronic Mathematical Reports, 12 (2015), 810–817 | MR | Zbl

[9] A.S. Kuzmina, Yu.N. Maltsev, “Finite rings with Eulerian nilpotent graphs”, Siberian Electronic Mathematical Reports, 14 (2017), 274–279 | MR | Zbl

[10] R. Diestel, Graph theory, Novosibirsk, 2002 (in Russian)

[11] F. Harary, Graph Theory, Mir, M., 1973 (in Russian) | MR | Zbl

[12] V.P. Elizarov, Finite rings, Gelios-ARV, M., 2006 (in Russian)

[13] N.J. Fine, I.N. Herstein, “The probability that a matrix be nilpotent”, Illinois J. Math., 2 (1958), 499–504 | MR | Zbl

[14] S.P. Redmond, “The Zero-Divisor Graph of a Noncommutative Ring”, Int. J. Commut. Rings, 1:4 (2002), 203–211 | MR

[15] I.M. Isaev, A.S. Kuzmina, “On Connectivity of Zero-Divisor Graphs of Algebras”, Vestnik Altai State Pedagogical Academy. Natural sciences, 7 (2011), 7–10