On finite rings in which nilpotent graphs satisfy the Dirac’s condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1373-1379

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all associative finite rings in which nilpotent graphs satisfy the Dirac’s condition.
Keywords: associative ring, finite ring, nilpotent graph, the Dirac’s theorem.
@article{SEMR_2017_14_a42,
     author = {Yu. N. Maltsev and A. S. Monastyreva},
     title = {On finite rings in which nilpotent graphs satisfy the {Dirac{\textquoteright}s} condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1373--1379},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/}
}
TY  - JOUR
AU  - Yu. N. Maltsev
AU  - A. S. Monastyreva
TI  - On finite rings in which nilpotent graphs satisfy the Dirac’s condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1373
EP  - 1379
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/
LA  - ru
ID  - SEMR_2017_14_a42
ER  - 
%0 Journal Article
%A Yu. N. Maltsev
%A A. S. Monastyreva
%T On finite rings in which nilpotent graphs satisfy the Dirac’s condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1373-1379
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/
%G ru
%F SEMR_2017_14_a42
Yu. N. Maltsev; A. S. Monastyreva. On finite rings in which nilpotent graphs satisfy the Dirac’s condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1373-1379. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a42/