Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a41, author = {I. V. Dobrynina}, title = {On normalizers of subgroups in {Coxeter} groups with tree-structure}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1338--1348}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a41/} }
I. V. Dobrynina. On normalizers of subgroups in Coxeter groups with tree-structure. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1338-1348. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a41/
[1] I. V. Dobrynina, “On normalizers in some Coxeter groups”, Chebyshevskii Sb., 17:2 (2016), 113–127 | MR
[2] V. N. Bezverkhnii, “Solution of the occurrence problem in some classes of groups with one defining relation”, Algorithmic problems of theory of groups and semigroups, 1986, 3–21 | MR
[3] V. N. Bezverkhnii, “Solution to the problem of occurrence for a class of groups”, Questions of the theory of groups and semigroups, 1972, 3–86 | MR
[4] V. N. Bezverkhnii, O. V. Inchenko, “Solvability of the occurrence problem in parabolic subgroups in Coxeter groups with tree structure”, Izvestiya TulGU. Ser. Differential equations and applied problems, 1 (2006), 47–58
[5] V. N. Bezverkhnii, O. V. Inchenko, “Conjugacy problem of subgroups in finitely generated Coxeter groups with tree structure”, Chebyshevskii Sb., 11:3 (2010), 32–56 | MR | Zbl
[6] V. N. Bezverkhnii, O. V. Inchenko, “The centralizer of elements of finite order of a finitely generated Coxeter group with a tree structure”, Chebyshevskii Sb., 9:1 (2008), 17–27 | MR | Zbl
[7] O.V. Inchenko, “On problem of intersection of the adjacency classes of finitely generated subgroups of Coxeter group with tree structure”, Chebyshevskii Sb., 17:2 (2016), 146–161 | MR