The Nagata automorphism of free nonassociative algebras of rank two over Euclidean domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1279-1288.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an analogue of the Nagata automorphism of free nonassociative algebras and free commutative algebras of rank two over а Euclidean domain and prove that it is wild.
Mots-clés : polynomial algebra, Euclidean domain.
Keywords: free nonassociative algebra, tame and wild automorphism
@article{SEMR_2017_14_a37,
     author = {A. A. Alimbaev and U. U. Umirbaev},
     title = {The {Nagata} automorphism of free nonassociative algebras of rank two over {Euclidean} domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1279--1288},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a37/}
}
TY  - JOUR
AU  - A. A. Alimbaev
AU  - U. U. Umirbaev
TI  - The Nagata automorphism of free nonassociative algebras of rank two over Euclidean domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1279
EP  - 1288
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a37/
LA  - ru
ID  - SEMR_2017_14_a37
ER  - 
%0 Journal Article
%A A. A. Alimbaev
%A U. U. Umirbaev
%T The Nagata automorphism of free nonassociative algebras of rank two over Euclidean domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1279-1288
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a37/
%G ru
%F SEMR_2017_14_a37
A. A. Alimbaev; U. U. Umirbaev. The Nagata automorphism of free nonassociative algebras of rank two over Euclidean domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1279-1288. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a37/

[1] H. W. E. Jung, “Uber ganze birationale Transformationen der Ebene”, J. Reine Angew. Math., 184 (1942), 161–174 | MR

[2] W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wiskunde (3), 1 (1953), 33–41 | MR | Zbl

[3] M. Nagata, On the automorphism group of $k[x, y]$, Lect. in Math., Kyoto Univ., Tokyo; Kinokuniya, 1972 | MR

[4] U. U. Umirbaev, I. P. Shestakov, “Subalgebras and automorphisms of polynomial rings”, Dokl. Akad. Nauk, 386:6 (2002), 745–748 | MR | Zbl

[5] I. P. Shestakov, U. U. Umirbaev, “The Nagata automorphism is wild”, Proc. Natl. Acad. Sci. USA, 100:22 (2003), 12561–12563 | DOI | MR | Zbl

[6] I. P. Shestakov, U. U. Umirbaev, “Tame and wild automorphisms of rings of polynomials in three variables”, J. Amer. Math. Soc., 17 (2004), 197–227 | DOI | MR | Zbl

[7] Functional Anal. Appl., 4 (1970), 262–263 | DOI | MR | Zbl

[8] A. G. Czerniakiewicz, “Automorphisms of a free associative algebra of rank 2. I, II”, Trans. Amer. Math. Soc., 160 (1971), 393–401 ; 171 (1972), 309–315 | MR | Zbl | MR | Zbl

[9] D. Kozybaev, L. Makar-Limanov, U. Umirbaev, “The Freiheitssatz and the automorphisms of free right-symmetric algebras”, Asian-European J. Math., 1:2 (2008), 243–254 | DOI | MR | Zbl

[10] L. Makar-Limanov, U. Turusbekova, U. Umirbaev, “Automorphisms and derivations of free Poisson algebras in two variables”, J. Algebra, 322:9 (2009), 3318–3330 | DOI | MR | Zbl

[11] U. U. Umirbaev, “The Anick automorphism of free associative algebras”, J. Reine Angew. Math., 605 (2007), 165–178 | MR | Zbl

[12] P. M. Cohn, “Subalgebras of free associative algebras”, Proc. London Math. Soc. (3), 14 (1964), 618–632 | DOI | MR | Zbl

[13] J. Lewin, “On Schreier varities of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl

[14] A. G. Kurosh, “Nonassociative free algebras and free products of algebras”, Mat. Sb., 20 (1947), 239–262 | MR | Zbl

[15] A. I. Shirshov, “Subalgebras of free commutative and free anticommutative algebras”, Mat. Sb. (N.S.), 34(76) (1954), 81–88 (Russian) | MR | Zbl

[16] A. I. Shirshov, “Subalgebras of free Lie algebras”, Mat. Sb. (N.S.), 33(75) (1953), 441–452 (Russian) | MR | Zbl

[17] E. Witt, “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64 (1956), 195–216 | DOI | MR | Zbl

[18] A. A. Mikhalev, “Subalgebras of free colored Lie superalgebras”, Mat. Zametki, 37:5 (1985), 653–661 | MR | Zbl

[19] A. S. Shtern, “Free Lie superalgebras”, Sibirsk. Mat. Zh., 27:1 (1986), 170–174 | MR | Zbl

[20] G. V. Kryazhovskikh, G. P. Kukin, “On subrings of free rings”, Siberian Math. J., 30:6 (1989), 87–97 | MR | Zbl

[21] G. V. Kryazhovskikh, G. P. Kukin, “Algorithmic properties of free rings”, Siberian Math. J., 32:6 (1991), 87–99 | MR

[22] D. Wright, “The amalgamated free product structure of $GL_2(k[x_1,\dots,x_n])$”, J. Pure Appl. Algebra, 12 (1978), 235–251 | DOI | MR | Zbl

[23] V. Drensky, J.-T. Yu, “Automorphisms of polynomial algebras and Dirichlet series”, J. Algebra, 321 (2009), 292–302 | DOI | MR | Zbl

[24] E. B. Vinberg, A Course in Algebra, Amer. Math. Soc., 2003 | MR | Zbl