On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1215-1219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the lattice freely generated by three elements, which are right modular and dually right modular simultaneously. We prove that this lattice contains the free lattice of rank $3$ as a sublattice.
Keywords: right modular element, dually right modular element, completely right modular element, free lattice.
@article{SEMR_2017_14_a34,
     author = {M. P. Shushpanov},
     title = {On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1215--1219},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/}
}
TY  - JOUR
AU  - M. P. Shushpanov
TI  - On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1215
EP  - 1219
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/
LA  - en
ID  - SEMR_2017_14_a34
ER  - 
%0 Journal Article
%A M. P. Shushpanov
%T On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1215-1219
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/
%G en
%F SEMR_2017_14_a34
M. P. Shushpanov. On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1215-1219. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/

[1] Grätzer G., Lattice Theory: Foundation, Springer Science Business Media, 2011 | MR

[2] Stern M., Semimodular Lattices, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[3] Bhatta S. P., “On the problem of characterizing standard elements by the exclusion of sublattices”, Order, 28:3 (2011), 565–576 | DOI | MR | Zbl

[4] Shushpanov M. P., “Lattices Generated by Modular Elements”, Russian Mathematics (Iz. VUZ), 59:12 (2015), 73–75 | MR | Zbl

[5] Gein A. G., Shushpanov M. P., “Sufficient conditions for the modularity of the lattice generated by elements with properties of modular type”, Siberian Mathematical Journal, 56:4 (2015), 631–636 | DOI | MR | Zbl