On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1215-1219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the lattice freely generated by three elements, which are right modular and dually right modular simultaneously. We prove that this lattice contains the free lattice of rank $3$ as a sublattice.
Keywords: right modular element, dually right modular element, completely right modular element, free lattice.
@article{SEMR_2017_14_a34,
     author = {M. P. Shushpanov},
     title = {On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1215--1219},
     year = {2017},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/}
}
TY  - JOUR
AU  - M. P. Shushpanov
TI  - On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1215
EP  - 1219
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/
LA  - en
ID  - SEMR_2017_14_a34
ER  - 
%0 Journal Article
%A M. P. Shushpanov
%T On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1215-1219
%V 14
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/
%G en
%F SEMR_2017_14_a34
M. P. Shushpanov. On the embedding of the free lattice of rank $3$ in the lattice freely generated by three completely right modular elements. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1215-1219. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a34/

[1] Grätzer G., Lattice Theory: Foundation, Springer Science Business Media, 2011 | MR

[2] Stern M., Semimodular Lattices, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[3] Bhatta S. P., “On the problem of characterizing standard elements by the exclusion of sublattices”, Order, 28:3 (2011), 565–576 | DOI | MR | Zbl

[4] Shushpanov M. P., “Lattices Generated by Modular Elements”, Russian Mathematics (Iz. VUZ), 59:12 (2015), 73–75 | MR | Zbl

[5] Gein A. G., Shushpanov M. P., “Sufficient conditions for the modularity of the lattice generated by elements with properties of modular type”, Siberian Mathematical Journal, 56:4 (2015), 631–636 | DOI | MR | Zbl