Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1153-1187
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we describe structure and defining relations of $2$-generated nilpotent algebra $R$ over arbitrary field with condition $dim R^{N}/R^{N+1} = 2$ for some natural number $N \geq 3$. It is proved that such algebra $R$ over a field of characteristic not two satisfies the standard identity of much smaller degree than $N$ (for large values of $N$).
Keywords:
defining relations, identities, nilpotent algebra.
@article{SEMR_2017_14_a33,
author = {E. P. Petrov},
title = {Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1153--1187},
year = {2017},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/}
}
TY - JOUR
AU - E. P. Petrov
TI - Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2017
SP - 1153
EP - 1187
VL - 14
UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/
LA - ru
ID - SEMR_2017_14_a33
ER -
%0 Journal Article
%A E. P. Petrov
%T Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1153-1187
%V 14
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/
%G ru
%F SEMR_2017_14_a33
E. P. Petrov. Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1153-1187. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/
[1] E. P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–1066 | MR | Zbl
[2] E. P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | DOI | MR | Zbl
[3] Yu. N. Mal'tsev, “On identities of nilpotent algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 1986, no. 9, 68–72 | Zbl
[4] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980 | MR | Zbl