Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a33, author = {E. P. Petrov}, title = {Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1153--1187}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/} }
TY - JOUR AU - E. P. Petrov TI - Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1153 EP - 1187 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/ LA - ru ID - SEMR_2017_14_a33 ER -
%0 Journal Article %A E. P. Petrov %T Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1153-1187 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/ %G ru %F SEMR_2017_14_a33
E. P. Petrov. Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1153-1187. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a33/
[1] E. P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–1066 | MR | Zbl
[2] E. P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | DOI | MR | Zbl
[3] Yu. N. Mal'tsev, “On identities of nilpotent algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 1986, no. 9, 68–72 | Zbl
[4] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980 | MR | Zbl