Finite algebras with non-computable morphisms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1147-1152
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct a variety $\mathbf V$ of partial algebgras with a finite basis of Kleene identities and a computable sequence $(\mathcal A_n \mid n< \omega)$ of finite algebras in $\mathbf V$ with a non-computable set $\{n \mid \mathcal A_n\ \text{is simple in}\ \mathbf V\}$, where the property ‘simple’ is considered with respect to epimorphisms.
Keywords:
partial algebra, quasi-variety, computable sequence.
Mots-clés : epimorphism
Mots-clés : epimorphism
@article{SEMR_2017_14_a32,
author = {M. S. Sheremet},
title = {Finite algebras with non-computable morphisms},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1147--1152},
year = {2017},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a32/}
}
M. S. Sheremet. Finite algebras with non-computable morphisms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1147-1152. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a32/