Finite algebras with non-computable morphisms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1147-1152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a variety $\mathbf V$ of partial algebgras with a finite basis of Kleene identities and a computable sequence $(\mathcal A_n \mid n \omega)$ of finite algebras in $\mathbf V$ with a non-computable set $\{n \mid \mathcal A_n\ \text{is simple in}\ \mathbf V\}$, where the property ‘simple’ is considered with respect to epimorphisms.
Keywords: partial algebra, quasi-variety, computable sequence.
Mots-clés : epimorphism
@article{SEMR_2017_14_a32,
     author = {M. S. Sheremet},
     title = {Finite algebras with non-computable morphisms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1147--1152},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a32/}
}
TY  - JOUR
AU  - M. S. Sheremet
TI  - Finite algebras with non-computable morphisms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1147
EP  - 1152
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a32/
LA  - ru
ID  - SEMR_2017_14_a32
ER  - 
%0 Journal Article
%A M. S. Sheremet
%T Finite algebras with non-computable morphisms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1147-1152
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a32/
%G ru
%F SEMR_2017_14_a32
M. S. Sheremet. Finite algebras with non-computable morphisms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1147-1152. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a32/

[1] M. S. Sheremet, “Irreducible algebras in quasivarieties of partial algebras”, Siberian Electronic Mathematical Reports (to appear)

[2] A. I. Mal'cev, Algorithms and recursive functions, Wolters-Noordhof, Groningen, 1970 | MR | Zbl