Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a30, author = {M. V. Grekhov}, title = {On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1017--1029}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/} }
TY - JOUR AU - M. V. Grekhov TI - On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1017 EP - 1029 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/ LA - ru ID - SEMR_2017_14_a30 ER -
%0 Journal Article %A M. V. Grekhov %T On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1017-1029 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/ %G ru %F SEMR_2017_14_a30
M. V. Grekhov. On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1017-1029. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/
[1] V. E. Voskresenski\u{i}, Birational Geometry of Linear Algebraic Groups, MCCME, M., 2009 (in Russian) | MR
[2] S. Yu. Popov, Standard Integral Models of Algebraic Tori, Preprintreihe des SFB 478 – Geometrische Strukturen in der Mathematik, 2003
[3] V. P. Platonov, A. S. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, Boston et al., 1994 | MR | Zbl
[4] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Springer-Verlag, Berlin–Heidelberg, 1990 | MR
[5] Ching-Li Ch., Jiu-Kang Yu., Congruences of Néron models for tori and the Artin conductor, National Center for Theoretical Science, National Tsing-Hua University, Hsinchu, Taiwan, 1999 | MR
[6] J. W. S. Cassels, A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, London–New York, 1967 | MR | Zbl
[7] V. E. Voskresenski\u{i}, B. É. Kunyavski\u{i}, B. Z. Moroz, “On Integral Models of Algebraic Tori”, St. Petersburg Mathematical Journal, 14:1 (2003), 35–52 | MR | Zbl
[8] M. V. Bondarko, “Ideals in an extension of a number field as modules over the ring of integers in a ground field”, Proceedings of the Session in analytic number theory and Diophantine equations, Bonner Math. Schriften, 360, eds. D. R. Heath-Brown, B. Z. Moroz, 2003 | MR | Zbl
[9] M. V. Grekhov, “Integral Models of Algebraic Tori Over Fields of Algebraic Numbers”, Journal of Mathematical Sciences, 219:3 (2016), 413–426 | DOI | MR | Zbl
[10] Z. I. Borevich, I. R. Shafarevich, Number Theory, Nauka, M., 1985 (in Russian) | MR | Zbl