On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1017-1029
Voir la notice de l'article provenant de la source Math-Net.Ru
Algebraic tori occupy a special place among linear algebraic groups. An algebraic torus can be defined over an arbitrary field but if a ground field belongs to an arithmetic type one can additionally consider schemes over this field's ring of integers which are linked to the original tori and called their integral models. Néron model and Voskresenskiĭ model are most well-known among them. There exists a broad range of problems dealing with the construction of these models and the research of their properties. This paper is dedicated to the research of some important integral models of algebraic tori over number fields, namely, standard and canonical integral models. Finally, the coincidence of these two models for an arbitrary algebraic torus is proven.
Mots-clés :
algebraic tori
Keywords: integral models.
Keywords: integral models.
@article{SEMR_2017_14_a30,
author = {M. V. Grekhov},
title = {On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1017--1029},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/}
}
TY - JOUR AU - M. V. Grekhov TI - On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1017 EP - 1029 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/ LA - ru ID - SEMR_2017_14_a30 ER -
%0 Journal Article %A M. V. Grekhov %T On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1017-1029 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/ %G ru %F SEMR_2017_14_a30
M. V. Grekhov. On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1017-1029. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/