On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1017-1029.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic tori occupy a special place among linear algebraic groups. An algebraic torus can be defined over an arbitrary field but if a ground field belongs to an arithmetic type one can additionally consider schemes over this field's ring of integers which are linked to the original tori and called their integral models. Néron model and Voskresenskiĭ model are most well-known among them. There exists a broad range of problems dealing with the construction of these models and the research of their properties. This paper is dedicated to the research of some important integral models of algebraic tori over number fields, namely, standard and canonical integral models. Finally, the coincidence of these two models for an arbitrary algebraic torus is proven.
Mots-clés : algebraic tori
Keywords: integral models.
@article{SEMR_2017_14_a30,
     author = {M. V. Grekhov},
     title = {On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1017--1029},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/}
}
TY  - JOUR
AU  - M. V. Grekhov
TI  - On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1017
EP  - 1029
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/
LA  - ru
ID  - SEMR_2017_14_a30
ER  - 
%0 Journal Article
%A M. V. Grekhov
%T On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1017-1029
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/
%G ru
%F SEMR_2017_14_a30
M. V. Grekhov. On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1017-1029. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/

[1] V. E. Voskresenski\u{i}, Birational Geometry of Linear Algebraic Groups, MCCME, M., 2009 (in Russian) | MR

[2] S. Yu. Popov, Standard Integral Models of Algebraic Tori, Preprintreihe des SFB 478 – Geometrische Strukturen in der Mathematik, 2003

[3] V. P. Platonov, A. S. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, Boston et al., 1994 | MR | Zbl

[4] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Springer-Verlag, Berlin–Heidelberg, 1990 | MR

[5] Ching-Li Ch., Jiu-Kang Yu., Congruences of Néron models for tori and the Artin conductor, National Center for Theoretical Science, National Tsing-Hua University, Hsinchu, Taiwan, 1999 | MR

[6] J. W. S. Cassels, A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, London–New York, 1967 | MR | Zbl

[7] V. E. Voskresenski\u{i}, B. É. Kunyavski\u{i}, B. Z. Moroz, “On Integral Models of Algebraic Tori”, St. Petersburg Mathematical Journal, 14:1 (2003), 35–52 | MR | Zbl

[8] M. V. Bondarko, “Ideals in an extension of a number field as modules over the ring of integers in a ground field”, Proceedings of the Session in analytic number theory and Diophantine equations, Bonner Math. Schriften, 360, eds. D. R. Heath-Brown, B. Z. Moroz, 2003 | MR | Zbl

[9] M. V. Grekhov, “Integral Models of Algebraic Tori Over Fields of Algebraic Numbers”, Journal of Mathematical Sciences, 219:3 (2016), 413–426 | DOI | MR | Zbl

[10] Z. I. Borevich, I. R. Shafarevich, Number Theory, Nauka, M., 1985 (in Russian) | MR | Zbl