Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a30, author = {M. V. Grekhov}, title = {On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1017--1029}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/} }
TY - JOUR AU - M. V. Grekhov TI - On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1017 EP - 1029 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/ LA - ru ID - SEMR_2017_14_a30 ER -
%0 Journal Article %A M. V. Grekhov %T On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1017-1029 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/ %G ru %F SEMR_2017_14_a30
M. V. Grekhov. On the coincidence of standard and canonical integral models of an arbitrary algebraic torus over a number field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1017-1029. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a30/