Functional representations of lattice-ordered semirings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 946-971

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to lattice-ordered semirings ($drl$-semirings) and their representations by sections of sheaves. We build two sheaves of $drl$-semirings. The first sheaf construction is generalization of Keimel sheaf of $l$-rings, the second sheaf is analogy of Lambek sheaf of abstract semirings. The classes of Gelfand, Rickart, biregular and strongly regular $f$-semirings are investigated in this paper. The main aim is to study sheaf representations of such algebras.
Keywords: lattice–ordered semiring, functional semiring, sheaf representation.
@article{SEMR_2017_14_a26,
     author = {V. V. Chermnykh and O. V. Chermnykh},
     title = {Functional representations of lattice-ordered semirings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {946--971},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a26/}
}
TY  - JOUR
AU  - V. V. Chermnykh
AU  - O. V. Chermnykh
TI  - Functional representations of lattice-ordered semirings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 946
EP  - 971
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a26/
LA  - ru
ID  - SEMR_2017_14_a26
ER  - 
%0 Journal Article
%A V. V. Chermnykh
%A O. V. Chermnykh
%T Functional representations of lattice-ordered semirings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 946-971
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a26/
%G ru
%F SEMR_2017_14_a26
V. V. Chermnykh; O. V. Chermnykh. Functional representations of lattice-ordered semirings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 946-971. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a26/