Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a26, author = {V. V. Chermnykh and O. V. Chermnykh}, title = {Functional representations of lattice-ordered semirings}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {946--971}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a26/} }
TY - JOUR AU - V. V. Chermnykh AU - O. V. Chermnykh TI - Functional representations of lattice-ordered semirings JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 946 EP - 971 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a26/ LA - ru ID - SEMR_2017_14_a26 ER -
V. V. Chermnykh; O. V. Chermnykh. Functional representations of lattice-ordered semirings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 946-971. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a26/
[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, R.I., 1967 | MR | Zbl
[2] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford–London–New York–Paris, 1963 | MR | Zbl
[3] F. Paoli, C. Tsinakis, “On Birkhoff 's common abstraction problem”, Studia Logica, 100 (2012), 1079–1105 | DOI | MR | Zbl
[4] K. L. N. Swamy, “Dually residuated lattice ordered semigroups”, Math. Ann., 159 (1965), 105–114 | DOI | MR | Zbl
[5] K. L. N. Swamy, “Dually residuated lattice ordered semigroups, II”, Math. Ann., 160 (1965), 64–71 | DOI | MR | Zbl
[6] N. A. Kovar, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thests, Palacky Univ., Olomouc., 1996
[7] T. Kovar, “Two remarks on dually residuated lattice ordered semigroups”, Math. Slovaka, 49 (1999), 17–18 | MR | Zbl
[8] J. Kuhr, “Representable dually residuated lattice-ordered monoids”, Discuss. Math. General Alg. and Appl., 23 (2003), 115–123 | MR | Zbl
[9] O. V. Chermnykh, “On drl-semigroups and drl-semirings”, Chebyshevskiy sbornik, 14:4 (2016), 167–179
[10] P. R. Rao, “Lattice ordered semirings”, Math. Sem. Notes, Kobe Univ., 9 (1981), 119–149 | MR | Zbl
[11] A. Grothendieck, J. Dieudonne, Elements de Geometrie Algebrique 1, Publ. Math., 4, I.H.E.S., Paris, 1960 | DOI | MR
[12] V. V. Chermnykh, “Representation of positive semirings by sections”, Uspehi matemat. nauk, 47:5 (1992), 193–194 | MR | Zbl
[13] V. V. Chermnykh, “Sheaf representations of semirings”, Uspehi matemat. nauk, 48:5 (1993), 185–185 | MR | Zbl
[14] V. V. Chermnykh, “Functional representation of semirings”, Fundament. i prikl. matemat., 17:3 (2012), 111–227 | MR | Zbl
[15] E. M. Vechtomov, A. V. Cheraneva, “Semifilds and their properties”, Fundament. i prikl. matemat., 14:5 (2008), 3–54 | MR
[16] K. Keimel, The representation of lattice ordered groups and rings by sections in sheaves, Lect. Notes Math., 248, Springer-Verlag, 1971 | DOI | MR
[17] J. Dauns, “Representation of l-groups and f-rings”, Pacific J. Math., 31 (1969), 629–654 | DOI | MR | Zbl
[18] K. Keimel, “Representations of lattice-ordered rings”, Proc Univ. of Houston. Lattice Theory Conf., 1973, 277–293 | MR | Zbl
[19] J. Lambek, “On the representation of modules by sheaves of factor modules”, Can. Math. Bull., 41:3 (1971), 359–368 | DOI | MR
[20] J. S. Golan, Semirings and their applications, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl
[21] B. A. Davey, “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134:4 (1973), 275–290 | DOI | MR | Zbl
[22] G. Bredon, Sheaf theory, McGray-Hill, New York, 1967 | MR | Zbl
[23] G. Birkhoff, R. S. Pierce, “Lattice-ordered rings”, An. Acad. Brasil. Ci., 28 (1956), 41–69 | MR | Zbl
[24] A. V. Miklin, V. V. Chermnykh, “On drl-semirings”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 16 (2014), 87–95
[25] L. A. Skornyakov (ed.), General algebra, v. 1, Nauka, M., 1990 | Zbl