@article{SEMR_2017_14_a14,
author = {M. P. Shushpanov},
title = {On infinity of the free $3$-generated lattice with one left modular generator},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {528--532},
year = {2017},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a14/}
}
M. P. Shushpanov. On infinity of the free $3$-generated lattice with one left modular generator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 528-532. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a14/
[1] G. Grätzer, Lattice Theory: Foundation, Springer Science Business Media, 2011 | MR
[2] M. Stern, Semimodular Lattices. Theory and Applications, Cambridge University Press, 1999 | MR | Zbl
[3] O. Ore, “On the theorem of Jordan–Holder”, Trans. Amer. Math. Soc., 41 (1937), 266–275 | MR
[4] S. P. Bhatta, “A characterization of neutral elements by the exclusion of sublattices”, Discrete Math., 309:6 (2009), 1691–1702 | DOI | MR | Zbl
[5] A. G. Gein, M. P. Shushpanov, “Finitely generated lattices with completely modular elements among generators”, Algebra and Logic, 52:6 (2014), 435–441 | DOI | MR | Zbl
[6] A. G. Gein, M. P. Shushpanov, “Sufficient conditions for the modularity of the lattice generated by elements with properties of modular type”, Sibirian Mathematical Journal, 56:4 (2015), 631–636 | DOI | MR | Zbl
[7] S. P. Bhatta, “On the Problem of Characterizing Standard Elements by the Exclusion of Sublattices”, Order, 28 (2011), 565–576 | DOI | MR | Zbl