Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a124, author = {A. S. Romanov}, title = {Classes of {Sobolev} type on quasimetric spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1447--1455}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a124/} }
A. S. Romanov. Classes of Sobolev type on quasimetric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1447-1455. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a124/
[1] A.V. Arutyunov, A.V. Greshnov, “Theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl
[2] P. Hajlasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl
[3] P. Hajlasz, J. Kinnunen, “Hölder quasicontinuity of Sobolev functions”, Rev. Mat. Iberoamericana, 14:3 (1998), 601–622 | DOI | MR | Zbl
[4] P. Hajlasz, P. Koskela, “Sobolev met Poincare”, Memoirs AMS, 145, no. 688, 2000 | DOI | MR
[5] A.S. Romanov, “Embedding theorems for generalized Sobolev spaces”, Siberian Math. Journal, 40:4 (1999), 787–792 | DOI | MR
[6] A.S. Romanov, “Traces of functions of generalized Sobolev classes”, Siberian Math. Journal, 48:4 (2007), 678–693 | DOI | MR | Zbl
[7] A.S. Romanov, “Embedding Theorems for a Certain Function Class of Sobolev Type on Metric Spaces”, Siberian Math. Journal, 45:2 (2004), 376–387 | DOI | MR | Zbl
[8] A.S. Romanov, “On Embeddings for Classes of Functions with Generalized Smoothness on Metric Spaces”, Siberian Math. Journal, 45:4 (2004), 722–729 | DOI | MR | Zbl