The Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 752-764.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is considered the problem of regularization of the Cauchy problem for systems of elliptic type equations of the first order with constant coefficients factorisable Helmholtz operator in threedimensional unbounded domain. Using the results of [1-6], is constructed explicitly Carleman matrix and, based on the regularized solution of the Cauchy problem.
Keywords: the Cauchy problem, regularization, factorization, regular solution, fundamental solution.
@article{SEMR_2017_14_a119,
     author = {D. A. Juraev},
     title = {The {Cauchy} problem for matrix factorizations of the {Helmholtz} equation in an unbounded domain},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {752--764},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a119/}
}
TY  - JOUR
AU  - D. A. Juraev
TI  - The Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 752
EP  - 764
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a119/
LA  - ru
ID  - SEMR_2017_14_a119
ER  - 
%0 Journal Article
%A D. A. Juraev
%T The Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 752-764
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a119/
%G ru
%F SEMR_2017_14_a119
D. A. Juraev. The Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 752-764. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a119/

[1] Tarkhanov N.N., “Ob integralnom predstavlenii resheniy sistem lineynykh differensialnyx uravneniy 1-go poryadka v chastnykh proizvodnykh i nekotoryx yego prilojeniyakh”, Nekotorye voprosy mnogomernogo kompleksnogo analiza, 269, Institut fiziki AN SSSR, Krasnoyarsk, 1980, 147–160

[2] Carleman T., Les fonctions quasi analytiques, Gautier-Villars et Cie, Paris, 1926 | Zbl

[3] Lavrent'ev M.M., O nekotorykh nekorrektnykh zadachakh matematicheskoy fiziki, Nauka, Novosibirsk, 1962 | MR | Zbl

[4] Yarmukhamedov Sh., “Funksiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. mat. zhurnal., 45:3 (2004), 702–719 | MR | Zbl

[5] Ayzenberg L.A., Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR

[6] Goluzin G.M., Krylov V.M., “Obobshennaya formula Karlemana i yeyo prilozheniye k analiticheskomu prodolzheniyu funksiy”, Mat. sb., 40:2 (1993), 144–149

[7] Tikhonov A.N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[8] Bers A., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[9] Aleksidze M.A., Fundamentalnye funksii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1991 | MR

[10] Makhmudov O.I., Niyozov I.E., “O zadache Koshi dlya mnogomernoy sistemy uravneniy Lame”, Izv. vuzov. Matem., 4 (2006), 41–50 | MR | Zbl

[11] Niyozov I.E., Makhmudov O.I., “Zadacha Koshi dlya sistemy uravneniy momentnoy teorii uprugosti v ${\mathbb R}^{m}$”, Izv. vuzov. Matem., 2 (2014), 30–37 | MR | Zbl

[12] Juraev D.A., “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa”, II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya studentov i aspirantov “Matematika i yeyo prilozheniya v sovremennoy nauke i praktike” (Kursk, 2012), 33–38

[13] Juraev D.A., “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa v ogranichennoy oblasti”, Aktualnye problemy mexaniki, matematiki, informatiki-2012, Mezhdunarodnaya konferentsiya posvyashyennaya 100-letiyu so dnya rozhdeniya professorov S.N. Chernikova, I.F. Vereshagina, L.I. Volkovysskogo (Perm, 2012), 43 | MR | Zbl

[14] Juraev D.A., “Konstruktsiya fundamentalnogo resheniya uravneniya Gelmgoltsa”, Doklady Akademii nauk Respubliki Uzbekistan, 4 (2012), 14–17

[15] Juraev D.A., “Regulyarizatsiya zadacha Koshi dlya sistem uravneniy ellipticheskogo tipa pervogo poryadka”, Uzbekskiy Matematicheskiy zhurnal, 2 (2016), 61–71