Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a118, author = {G. V. Garkavenko and N. B. Uskova}, title = {Method of similar operators in research of spectral properties of difference operators with growthing potential}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {673--689}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a118/} }
TY - JOUR AU - G. V. Garkavenko AU - N. B. Uskova TI - Method of similar operators in research of spectral properties of difference operators with growthing potential JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 673 EP - 689 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a118/ LA - ru ID - SEMR_2017_14_a118 ER -
%0 Journal Article %A G. V. Garkavenko %A N. B. Uskova %T Method of similar operators in research of spectral properties of difference operators with growthing potential %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 673-689 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a118/ %G ru %F SEMR_2017_14_a118
G. V. Garkavenko; N. B. Uskova. Method of similar operators in research of spectral properties of difference operators with growthing potential. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 673-689. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a118/
[1] B. Musilimov, M. Otelbaev, “Estimation of the least eigenvalues to the matrix class corresponding to the Sturm–Liouville difference operators”, USSR Computational Mathematics and Mathematical Physics, 21:1 (1981), 68–83 | DOI | MR
[2] M. Otelbaev, “Coercive estimates for the solution of the difference equation”, Proceeding of the Steklov Institute of Mathematics, 181 (1989), 265–274 | MR | Zbl
[3] A.G. Kostyuchenko, I.S. Sargsyan, Distribution of eigenvalues (self-adjoint ordinary differential operators), Nauka, M., 1970 (in Russian) | MR
[4] M.A. Naimark, Linear differential operators, v. II, New York, 1968 | MR | Zbl
[5] A.G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izvestiya: Mathematics, 61:6 (1997), 1113–1135 | DOI | MR | Zbl
[6] A.G. Baskakov, I.A. Krishtal, “Memory estimation of inverse operators”, J. Funct. Anal., 267:8 (2014), 2551–2605 | DOI | MR | Zbl
[7] I.A. Blatov, “On algebras and applications of operators with pseudosparse matrices”, Siberian Math. Journal, 37:1 (1996), 32–52 | DOI | MR | Zbl
[8] I.Ts. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Amer. Math. Soc., Providence, RI, 1969 | MR
[9] A.G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. Journal, 24:1 (1983), 17–32 | DOI | MR
[10] A.G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Mathematics of the USSR-Izvestiya, 28:3 (1987), 421–444 | DOI | Zbl
[11] A.G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izvestiya: Mathematics, 45:1 (1995), 1–31 | DOI | MR | Zbl
[12] A.G. Baskakov, “Spectral analysis with respect to finite-dimensional perturbations of spectral operators”, Soviet Mathematics (Izvestiya VUZ. Matematika), 35:1 (1991), 1–11 | MR | Zbl
[13] A.G. Baskakov, A.V. Derbushev, A.O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izvestiya: Mathematics, 75:3 (2011), 445–469 | DOI | MR | Zbl
[14] N.B. Uskova, “On a result of R. Terner”, Mathematical Notes, 76:6 (2004), 844–854 | DOI | MR | Zbl
[15] N.B. Uskova, “On the method of similar operators in Banach algebras”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:3 (2005), 75–81 | MR | Zbl
[16] G.V. Garkavenko, “On diagonalization of certain classes of linear operators”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:11 (1994), 11–16 | MR | Zbl
[17] A.G. Baskakov, “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Sbornik: Mathematics, 206:8 (2015), 1049–1086 | DOI | MR | Zbl
[18] N.B. Uskova, “On spectral properties of second order differential operator with matrix potential”, Differential Equations, 52:5 (2016), 557–567 | DOI | MR | Zbl
[19] N.B. Uskova, “On spectral properties of second order differential operator with matrix potential”, Ufa Math. Journal, 7:3 (2015), 88–99 | DOI | MR
[20] D.M. Polyakov, “Spectral analysis of a fourth-order nonselfadjoint operator with nonsmooth coefficients”, Siberian Mathematical Journal, 56:1 (2015), 138–154 | DOI | MR | Zbl
[21] A.G. Baskakov, D.M. Polyakov, “Spectral Properties of the Hill Operator”, Mathematical Notes, 99:4 (2016), 598–602 | DOI | MR | Zbl
[22] A.O. Shcherbakov, “Regularized Trace of the Dirac Operator”, Mathematical Notes, 98:1 (2015), 168–179 | DOI | MR | Zbl
[23] W. Rudin, Functional Analysis, McGraw-Hill book, 1973 | MR | Zbl
[24] N. Dunford, J.T. Schwartz, Linear operators. Spectral operators, v. III, Pure and Applied Mathematics, VII, Wiley-Interscience, New York, 1971 | MR | Zbl
[25] A.G. Baskakov, “Wiener's theorem and the asymptotic estimates of the elements of inverse matrices”, Functional Analysis and Its Applications, 24:3 (1990), 222–224 | DOI | MR | Zbl
[26] A.G. Baskakov, “Abstract harmonic analysis and asymptotic estimates of elements of inverse matrices”, Mathematical Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl
[27] A.G. Baskakov, “Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis”, Siberian Mathematical Journal, 38:1 (1997), 10–22 | DOI | MR | Zbl
[28] J.-P. Kahane, Series de Fourier absolument convergence, New York, 1970 | MR
[29] M.A. Shubin, “Pseudodifference operators and their Green's function”, Mathematics of the USSR-Izvestiya, 26:3 (1986), 605–622 | DOI | Zbl
[30] A.G. Baskakov, Haromic analysis of linear operators, Voronezh University Press, Voronezh, 1987 (in Russian) | MR