Conditions for the stability and uniqueness of the solution of the Markushevich problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 511-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study the problem of Markushevich (generalized Riemann boundary value problem). New conditions are obtained for the stability and the unique of the Markushevich problem.
Keywords: problem of Markushevich, Riemann boundary value problems, factorization of matrix functions, factorization indices, stability
Mots-clés : unique.
@article{SEMR_2017_14_a115,
     author = {A. F. Voronin},
     title = {Conditions for the stability and uniqueness of the solution of the {Markushevich} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {511--517},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Conditions for the stability and uniqueness of the solution of the Markushevich problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 511
EP  - 517
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/
LA  - ru
ID  - SEMR_2017_14_a115
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Conditions for the stability and uniqueness of the solution of the Markushevich problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 511-517
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/
%G ru
%F SEMR_2017_14_a115
A. F. Voronin. Conditions for the stability and uniqueness of the solution of the Markushevich problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 511-517. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/

[1] A. I. Markushevich, “Ob odnoi granichnoi zadache teorii analiticheskikh funktsii”, Uchenye zapiski MGU, 100 (1946), 20–30 | MR

[2] Litvinchuk G. S., “Two theorems on the stability of the partial indices of Riemann's boundary value problem and their application”, Izv. vuzov. Matematika, 1967, no. 12, 47–57 (In Russian) | MR | Zbl

[3] N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1972 | MR

[4] L. G. Mikhailov, “A general boundary-value problem for infinitesimal bending of fused surfaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 5, 99–109 | MR | Zbl

[5] F. D. Gakhov, Boundary Value Problems, Dover Publication Inc., New-York, 1990 | MR | Zbl

[6] Idzhad Kh. Sabitov, “Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries”, Izvestiya: Mathematics, 76:6 (2012), 1218–1256 | DOI | MR

[7] V. M. Adukov, A. A. Patrushev, “On explicit and exact solutions of the Markushevich boundary problem for circle”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:2 (2011), 9–20

[8] Gokhberg I. Ts., Krein M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspekhi mat. nauk, 13:2 (1958), 3–72 (Russian) | MR