Conditions for the stability and uniqueness of the solution of the Markushevich problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 511-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we study the problem of Markushevich (generalized Riemann boundary value problem). New conditions are obtained for the stability and the unique of the Markushevich problem.
Keywords: problem of Markushevich, Riemann boundary value problems, factorization of matrix functions, factorization indices, stability
Mots-clés : unique.
@article{SEMR_2017_14_a115,
     author = {A. F. Voronin},
     title = {Conditions for the stability and uniqueness of the solution of the {Markushevich} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {511--517},
     year = {2017},
     volume = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Conditions for the stability and uniqueness of the solution of the Markushevich problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 511
EP  - 517
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/
LA  - ru
ID  - SEMR_2017_14_a115
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Conditions for the stability and uniqueness of the solution of the Markushevich problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 511-517
%V 14
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/
%G ru
%F SEMR_2017_14_a115
A. F. Voronin. Conditions for the stability and uniqueness of the solution of the Markushevich problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 511-517. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a115/

[1] A. I. Markushevich, “Ob odnoi granichnoi zadache teorii analiticheskikh funktsii”, Uchenye zapiski MGU, 100 (1946), 20–30 | MR

[2] Litvinchuk G. S., “Two theorems on the stability of the partial indices of Riemann's boundary value problem and their application”, Izv. vuzov. Matematika, 1967, no. 12, 47–57 (In Russian) | MR | Zbl

[3] N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1972 | MR

[4] L. G. Mikhailov, “A general boundary-value problem for infinitesimal bending of fused surfaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 5, 99–109 | MR | Zbl

[5] F. D. Gakhov, Boundary Value Problems, Dover Publication Inc., New-York, 1990 | MR | Zbl

[6] Idzhad Kh. Sabitov, “Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries”, Izvestiya: Mathematics, 76:6 (2012), 1218–1256 | DOI | MR

[7] V. M. Adukov, A. A. Patrushev, “On explicit and exact solutions of the Markushevich boundary problem for circle”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:2 (2011), 9–20

[8] Gokhberg I. Ts., Krein M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspekhi mat. nauk, 13:2 (1958), 3–72 (Russian) | MR