Multiple interpolation for Nevanlinna type spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 264-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we solve the multiple interpolation problem in the class of analytic functions in the unit disk with the Nevanlinna characteristic from $L^p$-spaces under the condition that interpolation nodes are contained in a finite union of Stolz angles and we describe the principal parts of a Laurent series of meromorphic functions with the same restrictions on the Nevanlinna characteristic.
Keywords: meromorphic function, the Nevanlinna characteristic.
Mots-clés : multiple interpolation, a Laurent series, principal parts
@article{SEMR_2017_14_a114,
     author = {E. G. Rodikova},
     title = {Multiple interpolation for {Nevanlinna} type spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {264--273},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a114/}
}
TY  - JOUR
AU  - E. G. Rodikova
TI  - Multiple interpolation for Nevanlinna type spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 264
EP  - 273
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a114/
LA  - ru
ID  - SEMR_2017_14_a114
ER  - 
%0 Journal Article
%A E. G. Rodikova
%T Multiple interpolation for Nevanlinna type spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 264-273
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a114/
%G ru
%F SEMR_2017_14_a114
E. G. Rodikova. Multiple interpolation for Nevanlinna type spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 264-273. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a114/

[1] Bednazh V. A., Description of traces, characteristic of the principal parts in the Laurent expansion of classes of meromorphic functions with restrictions on growth characteristics Nevanlinna, Thesis Abstract, St. Peter., 2007, 16 pp. (in Russian)

[2] Bednazh V. A., Rodikova E. G., Shamoyan F. A., “Multiple interpolation and principal parts of a Laurent series for meromorphic functions in the unit disk with power growth of the Nevanlinna characteristic”, Complex Analysis and Operator Theory, 11:1 (2017), 197–215 | DOI | MR | Zbl

[3] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[4] Djrbashian M. M., “On the representation problem of analytic functions”, Soob. Inst. Math. i Mekh. AN ArmSSR, 2 (1948), 3–40 (in Russian)

[5] Djrbashian M. M., “Basicity of some biorthogonal systems and the solution of the multiple interpolation problem in $H^p$-classes in the halfplane”, Izv. Akad. Nauk ArmSSR, Matematika, 43:6 (1978), 1327–1384 (in Russian)

[6] Hartmann A., Massaneda X., Nicolau A., Thomas P., “Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants”, J. Funct. Anal., 217 (2004), 1–37 | DOI | MR | Zbl

[7] Kotochigov A. M., Free interpolation in Jordan domains, Thesis Abstract, The Russian Academy of Sciences, St. Petersburg Department of Steklov Institute of Mathematics, St. Peter., 2001, 24 pp. (in Russian) | MR

[8] Naftalevic A. G., “On interpolation by functions of bounded characteristic”, Vilniaus Valst. Univ. Mokslu Darbai. Mat. Fiz. Chem. Mokslu Ser., 5 (1956), 5–27 (in Russian) | MR

[9] Nevanlinna R., Eindeutige analytische Funktionen, 2nd ed., Springer-Verlag, Berlin, 1953 | MR | Zbl

[10] Rodikova E. G., “On estimates of the expansion coefficients of certain classes of analytic functions in the disk”, Abstracts of Petrozavodsk international conference «Complex analysis and its applications», Petrozavodsk St. Univ., 2012, 64–69 (in Russian)

[11] Rodikova E. G., “On Interpolation in the class of analytic functions in the unit disk with the Nevanlinna characteristic from Lp-spaces”, Journal of Siberian Federal University, Math. and phys., 9:1 (2016), 69–78 | DOI

[12] Seip K., Interpolation and sampling in spaces of analytic functions, University Lecture Series, 33, Amer. Math. Soc., Providence, 2004 | DOI | MR | Zbl

[13] Shamoyan F. A., “M. M. Dzhrbashian's factorization theorem and characterization of zeros of functions analytic in the disk with a majorant of bounded growth”, Izv. Akad. Nauk ArmSSR, Matematika, 13:5–6 (1978), 405–422 (in Russian) | MR | Zbl

[14] Shamoyan F. A., “Parametric representation and description of the root sets of weighted classes of holomorphic functions in a disk”, Sib. Math. Journ., 40:6 (1999), 1422–1440 (in Russian) | DOI | MR | Zbl

[15] Shamoyan F. A., Weighted spaces of analytic functions with mixed norm, Bryansk St. Univ., Bryansk, 2014 (in Russian)

[16] Shamoyan F. A., Bednazh V. A., “Multiple interpolation in weighted classes of analytic functions in the disk”, Siberian Electronic Mathematical Reports, 11 (2014), 354–361 (in Russian) | Zbl

[17] Shamoyan F. A., Kursina I. S., “On the invariance of some class of holomorphic functions with respect to integro-differentiation operator”, Zapiski nauch. semin. POMI, 255, 1998, 184–197 (in Russian) | MR | Zbl

[18] Shapiro J., Shields A., “On some interpolation problems for analytic functions”, Amer. J. Math., 83 (1961), 513–532 | DOI | MR | Zbl

[19] Stein E. M., Singular integrals and differentiability properties of functions, Princeton University Press, 1970 | MR | Zbl

[20] Vinogradov S. A., Havin V. P., “Free interpolation in $H^{\infty}$ and in some other classes of functions”, J. of Math. Sci., 47 (1974), 15–54 (in Russian) | MR | Zbl