Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a111, author = {A. E. Mamontov and D. A. Prokudin}, title = {Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {388--397}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/} }
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 388 EP - 397 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/ LA - en ID - SEMR_2017_14_a111 ER -
%0 Journal Article %A A. E. Mamontov %A D. A. Prokudin %T Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 388-397 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/ %G en %F SEMR_2017_14_a111
A. E. Mamontov; D. A. Prokudin. Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 388-397. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/
[1] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2009 | MR | Zbl
[2] A. V. Kazhikov, A. N. Petrov, “Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture”, Din. Splosh. Sredy, 35 (1978), 61–73 (in Russian) | MR
[3] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary Solutions to the Equations of Dynamics of Mixtures of Heat-Conductive Compressible Viscous Fluids”, Siberian Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl
[4] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | DOI | MR
[5] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat–conducting fluids”, Izvestiya Ros. Akad. Nauk. Ser.: Mathematics, 78:3 (2014), 554–579 | MR | Zbl
[6] A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 664–693 (in Russian) | MR
[7] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 541–583 (in Russian) | MR | Zbl
[8] A. E. Mamontov, D. A. Prokudin, “Solvability of the initial boundary value problem for the equations of viscous compressible multi-fluids”, 8th International Scientific School-Conference of Young Scientists “Theory and Numerical Methods of Solving Inverse and Ill-posed Problems” (Novosibirsk, 1–7 September, 2016) http://conf.ict.nsc.ru/files/conferences/tcmiip2016/336905/abs_MamontovAE_ProkudinDA.pdf | MR
[9] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multocomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl
[10] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the problem of three-dimensional steady barotropic motions of viscous compressible multi-fluids”, Siberian Math. J., 58:1 (2017) (to appear) | DOI
[11] A. E. Mamontov, D. A. Prokudin, “Local solvability of the initial boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multi-fluids”, Siberian Journal of Pure and Applied Mathematics, 17 (2017) (to appear)
[12] A. E. Mamontov, D. A. Prokudin, “Solvability of unsteady equations of multicomponent viscous compressible fluids”, Izvestiya: Mathematics, 81 (2017) (to appear)
[13] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl
[14] A. N. Petrov, “Well-posedness of initial-boundary value problems for one-dimensional equations of mutually penetrating flows of ideal gases”, Din. Splosh. Sredy, 56 (1982), 105–121 (in Russian) | MR
[15] D. A. Prokudin, M. V. Krayushkina, “Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 417–428 | DOI | MR | Zbl