Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 388-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the model of viscous compressible homogeneous multi-fluids with multiple velocities. We review different formulations of the model and the existence results for boundary value problems. We analyze crucial mathematical difficulties which arise during the proof of the existence theorems.
Keywords: existence theorem, boundary value problem
Mots-clés : viscous compressible multi-fluid, effective viscous flux.
@article{SEMR_2017_14_a111,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {388--397},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 388
EP  - 397
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/
LA  - en
ID  - SEMR_2017_14_a111
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 388-397
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/
%G en
%F SEMR_2017_14_a111
A. E. Mamontov; D. A. Prokudin. Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 388-397. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a111/

[1] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2009 | MR | Zbl

[2] A. V. Kazhikov, A. N. Petrov, “Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture”, Din. Splosh. Sredy, 35 (1978), 61–73 (in Russian) | MR

[3] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary Solutions to the Equations of Dynamics of Mixtures of Heat-Conductive Compressible Viscous Fluids”, Siberian Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl

[4] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | DOI | MR

[5] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat–conducting fluids”, Izvestiya Ros. Akad. Nauk. Ser.: Mathematics, 78:3 (2014), 554–579 | MR | Zbl

[6] A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 664–693 (in Russian) | MR

[7] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 541–583 (in Russian) | MR | Zbl

[8] A. E. Mamontov, D. A. Prokudin, “Solvability of the initial boundary value problem for the equations of viscous compressible multi-fluids”, 8th International Scientific School-Conference of Young Scientists “Theory and Numerical Methods of Solving Inverse and Ill-posed Problems” (Novosibirsk, 1–7 September, 2016) http://conf.ict.nsc.ru/files/conferences/tcmiip2016/336905/abs_MamontovAE_ProkudinDA.pdf | MR

[9] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multocomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl

[10] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the problem of three-dimensional steady barotropic motions of viscous compressible multi-fluids”, Siberian Math. J., 58:1 (2017) (to appear) | DOI

[11] A. E. Mamontov, D. A. Prokudin, “Local solvability of the initial boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multi-fluids”, Siberian Journal of Pure and Applied Mathematics, 17 (2017) (to appear)

[12] A. E. Mamontov, D. A. Prokudin, “Solvability of unsteady equations of multicomponent viscous compressible fluids”, Izvestiya: Mathematics, 81 (2017) (to appear)

[13] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[14] A. N. Petrov, “Well-posedness of initial-boundary value problems for one-dimensional equations of mutually penetrating flows of ideal gases”, Din. Splosh. Sredy, 56 (1982), 105–121 (in Russian) | MR

[15] D. A. Prokudin, M. V. Krayushkina, “Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 417–428 | DOI | MR | Zbl