On maximum orders of elements of simple orthogonal groups in characteristic~2
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 405-417

Voir la notice de l'article provenant de la source Math-Net.Ru

We give exact formulas for the two largest orders of elements of the simple orthogonal group $\Omega_{2n}^\varepsilon(q)$, where $\varepsilon\in\{+,-\}$ and $q>2$ is even.
Keywords: maximum order of an element
Mots-clés : simple orthogonal group.
@article{SEMR_2017_14_a11,
     author = {M. A. Grechkoseeva and D. V. Lytkin},
     title = {On maximum orders of elements of simple orthogonal groups in characteristic~2},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {405--417},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
AU  - D. V. Lytkin
TI  - On maximum orders of elements of simple orthogonal groups in characteristic~2
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 405
EP  - 417
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/
LA  - en
ID  - SEMR_2017_14_a11
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%A D. V. Lytkin
%T On maximum orders of elements of simple orthogonal groups in characteristic~2
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 405-417
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/
%G en
%F SEMR_2017_14_a11
M. A. Grechkoseeva; D. V. Lytkin. On maximum orders of elements of simple orthogonal groups in characteristic~2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 405-417. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/