On maximum orders of elements of simple orthogonal groups in characteristic~2
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 405-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give exact formulas for the two largest orders of elements of the simple orthogonal group $\Omega_{2n}^\varepsilon(q)$, where $\varepsilon\in\{+,-\}$ and $q>2$ is even.
Keywords: maximum order of an element
Mots-clés : simple orthogonal group.
@article{SEMR_2017_14_a11,
     author = {M. A. Grechkoseeva and D. V. Lytkin},
     title = {On maximum orders of elements of simple orthogonal groups in characteristic~2},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {405--417},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
AU  - D. V. Lytkin
TI  - On maximum orders of elements of simple orthogonal groups in characteristic~2
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 405
EP  - 417
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/
LA  - en
ID  - SEMR_2017_14_a11
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%A D. V. Lytkin
%T On maximum orders of elements of simple orthogonal groups in characteristic~2
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 405-417
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/
%G en
%F SEMR_2017_14_a11
M. A. Grechkoseeva; D. V. Lytkin. On maximum orders of elements of simple orthogonal groups in characteristic~2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 405-417. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a11/

[1] W. M. Kantor, Á. Seress, “Large element orders and the characteristic of Lie-type simple groups”, J. Algebra, 322:3 (2009), 802–832 | DOI | MR | Zbl

[2] A. V. Vasil'ev, M. A. Grechkoseeva, V. D. Mazurov, “Characterization of the finite simple groups by spectrum and order”, Algebra Logic, 48:6 (2009), 385–409 | DOI | MR | Zbl

[3] S. Guest, J. Morris, C. E. Praeger, P. Spiga, “On the maximum orders of elements of finite almost simple groups and primitive permutation groups”, Trans. Amer. Math. Soc., 367 (2015), 7665–7694 | DOI | MR | Zbl

[4] D. V. Lytkin, “Large element orders and the characteristic of finite simple symplectic groups”, Siberian Math. J., 54:1 (2013), 78–95 | DOI | MR | Zbl

[5] P. Spiga, “The maximum order of the elements of a finite symplectic group of even characteristic”, Comm. Algebra, 43:4 (2015), 1417–1434 | DOI | MR | Zbl

[6] A. A. Buturlakin, “Spectra of finite symplectic and orthogonal groups”, Siberian Adv. Math., 21:3 (2011), 176–210 | DOI | MR

[7] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Number 3, Mathematical Surveys and Monographs, 40, no. 3, American Mathematical Society, Providence, RI, 1998 | MR

[8] M. A. Grechkoseeva, On orders of elements of finite almost simple groups with linear or unitary socle, 2016, arXiv: 1609.00518 [math.GR]