A numerical method for analyzing nonlocal data from film thermoresistors of electronic boards
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 914-926.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm is proposed for determining the areas of overheating of a printed circuit board with electronic components and the temperature of overheating by analyzing nonlocal data from extended film thermistors. The algorithm is based on the physical-mathematical model of the temperature field of the board, as well as some qualitative characteristics of thermal states under study, which compensate the underdefinition of the original mathematical formulation. The results of computational experiments illustrating the operability of the algorithm are presented.
Keywords: film thermoresistors, physical-mathematical model, underdefined systems of equations, numerical algorithms.
@article{SEMR_2017_14_a108,
     author = {V. V. Shaydurov and A. A. Korneeva},
     title = {A numerical method for analyzing nonlocal data from film thermoresistors of electronic boards},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {914--926},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a108/}
}
TY  - JOUR
AU  - V. V. Shaydurov
AU  - A. A. Korneeva
TI  - A numerical method for analyzing nonlocal data from film thermoresistors of electronic boards
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 914
EP  - 926
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a108/
LA  - ru
ID  - SEMR_2017_14_a108
ER  - 
%0 Journal Article
%A V. V. Shaydurov
%A A. A. Korneeva
%T A numerical method for analyzing nonlocal data from film thermoresistors of electronic boards
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 914-926
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a108/
%G ru
%F SEMR_2017_14_a108
V. V. Shaydurov; A. A. Korneeva. A numerical method for analyzing nonlocal data from film thermoresistors of electronic boards. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 914-926. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a108/

[1] D. S. Steinberg, Vibration analysis for electronic equipment, Wiley, New York, 2000

[2] V. V. Shaydurov, V. A. Derevyanko, E. N. Vasilyev, V. E. Kosenko, V. D. Zvonar, V. E. Chebotarev, “Results and prospects of joint thermal researches in ICM SB RAS and JSC “ISS” Academician M. F. Reshetnev”, Vestnik SibGAU, 6(52) (2013), 107–110 (in Russ.)

[3] F. Lieneweg, Measurement of temperature in the equipment, Metallurgy, M., 1980 (in Russ.)

[4] Temperature measurement handbook, Omega Engineering, Stamford, 1983

[5] S. D. Wood, B. W. Mangum, J. J. Filliben, S. B. Tillett, “An investigation of the stability of thermistors”, J. Research of the National Bureau of Standards, 83:3 (1978), 247–263 | DOI

[6] J. L. Riddle, G. T. Furikava, H. H. Plumb, Platinum resistance thermometry, National Bureau of Standards, Monograph, 126, U.S. Government printing office, Washington, 1972 | MR

[7] Standard specification and temperature-electromotive force (EMF) tables for standardizied thermocouples, ASTM E230-98, American Society for Testing and Material, West Conshohocken, 1998

[8] J. P. Caltagirone, Reseau maille de conducteurs electriques, notamment pour mesure de temperatures, Demande de brevet d'invention No 2315689, Intern. Classification G01K7/04, France, 1977

[9] A. A. Korneeva, V. V. Shaydurov, “Numerical analysis of temperature data from film thermistors of electronic boards”, Computing technologies, 22:3 (2017), 32–44 (in Russ.)

[10] V. A. Derevyanko, A. F. Latypov, “Recovery of the temperature distribution of the medium in the two-dimentional domain by the tomographic method from the measurements of the electric resistance of oriented conductors”, Computing technologies, 22:5 (2017) (to appear) (in Russ.)

[11] A. I. Maltsev, Fundamentals of linear algebra, Nauka, M., 1970 (in Russ.) | MR

[12] I. R. Shafarevich, A. O. Ramezov, Fundamentals of linear algebra, Fizmatlit, M., 2009 (in Russ.)