Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a101, author = {A. F. Voronin}, title = {The inverse and direct problem for equation of the first kind of convolution on the half-line}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1456--1462}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/} }
TY - JOUR AU - A. F. Voronin TI - The inverse and direct problem for equation of the first kind of convolution on the half-line JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1456 EP - 1462 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/ LA - ru ID - SEMR_2017_14_a101 ER -
%0 Journal Article %A A. F. Voronin %T The inverse and direct problem for equation of the first kind of convolution on the half-line %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1456-1462 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/ %G ru %F SEMR_2017_14_a101
A. F. Voronin. The inverse and direct problem for equation of the first kind of convolution on the half-line. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1456-1462. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/
[1] Voronin A. F., “Recovery solutions of the Volterra equation of the first kind of convolution on the half with incomplete data”, Siberian Electronic Mathematical Reports, 9 (2012), 464 –471 http://semr.math.nsc.ru | MR | Zbl
[2] Krein M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspehi Mat. Nauk, 13:5 (1958), 3–120 (Russian) | MR
[3] S. Prossdorf, Einige Klassen singularer Gleichungen, Berlin, 1974 | MR
[4] F.D. Gahov, Yu.I. Cherskiy, The equations of the áonvolution type, Nauka, M., 1978 (Russian) | MR