The inverse and direct problem for equation of the first kind of convolution on the half-line
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1456-1462.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the integral equation first kind of convolution on the semi-infinite interval. The next two tasks are: Task is reconstruction of history. From the integral equation it is required to find two functions $u(t)$ for $t>0$ and $f(t)$ for $0$ for given values of the right side of the equation $f(t)$ for $t>b$ ($u(t)$ — solution of integral equation). The problem of inversion of the integral operator. Uniqueness theorems are proved, necessary and sufficient conditions for solvability are found, explicit formulas for solutions are received.
@article{SEMR_2017_14_a101,
     author = {A. F. Voronin},
     title = {The inverse and direct problem for equation of the first kind of convolution on the half-line},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1456--1462},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - The inverse and direct problem for equation of the first kind of convolution on the half-line
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1456
EP  - 1462
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/
LA  - ru
ID  - SEMR_2017_14_a101
ER  - 
%0 Journal Article
%A A. F. Voronin
%T The inverse and direct problem for equation of the first kind of convolution on the half-line
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1456-1462
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/
%G ru
%F SEMR_2017_14_a101
A. F. Voronin. The inverse and direct problem for equation of the first kind of convolution on the half-line. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1456-1462. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a101/

[1] Voronin A. F., “Recovery solutions of the Volterra equation of the first kind of convolution on the half with incomplete data”, Siberian Electronic Mathematical Reports, 9 (2012), 464 –471 http://semr.math.nsc.ru | MR | Zbl

[2] Krein M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspehi Mat. Nauk, 13:5 (1958), 3–120 (Russian) | MR

[3] S. Prossdorf, Einige Klassen singularer Gleichungen, Berlin, 1974 | MR

[4] F.D. Gahov, Yu.I. Cherskiy, The equations of the áonvolution type, Nauka, M., 1978 (Russian) | MR