On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved that a distance regular graph in which neighborhoods of vertices are strongly regular with parameters $(243,22,1,2)$ has intersection array $\{243,220,1;1,22,243\}$ or $\{243,220,1;1,4,243\}$. In this paper we found the automorphisms of a distance regular graph with intersection array $\{243,220,1;1,4,243\}$. In particular, this graph is not vertex-symmetric.
@article{SEMR_2017_14_a0,
     author = {V. V. Bitkina},
     title = {On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/}
}
TY  - JOUR
AU  - V. V. Bitkina
TI  - On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 26
EP  - 32
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/
LA  - ru
ID  - SEMR_2017_14_a0
ER  - 
%0 Journal Article
%A V. V. Bitkina
%T On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 26-32
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/
%G ru
%F SEMR_2017_14_a0
V. V. Bitkina. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 26-32. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/

[1] A. A. Makhnev, D. V. Paduchikh, “Graphs with strongly regular local subgraphs having eigenvalue 4”, Maltsevskie chteniya, Abstracts (Novosibirsk, 2016), 86

[2] Bitkina V. V., Gutnova A. K., Makhnev A. A., “Automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$”, Sibirean electr. Math. Reports, 13 (2009), 1040–1051

[3] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[5] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 3 (2010), 439–442 | DOI | MR | Zbl

[6] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl