On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 26-32

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved that a distance regular graph in which neighborhoods of vertices are strongly regular with parameters $(243,22,1,2)$ has intersection array $\{243,220,1;1,22,243\}$ or $\{243,220,1;1,4,243\}$. In this paper we found the automorphisms of a distance regular graph with intersection array $\{243,220,1;1,4,243\}$. In particular, this graph is not vertex-symmetric.
@article{SEMR_2017_14_a0,
     author = {V. V. Bitkina},
     title = {On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/}
}
TY  - JOUR
AU  - V. V. Bitkina
TI  - On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 26
EP  - 32
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/
LA  - ru
ID  - SEMR_2017_14_a0
ER  - 
%0 Journal Article
%A V. V. Bitkina
%T On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 26-32
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/
%G ru
%F SEMR_2017_14_a0
V. V. Bitkina. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 26-32. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/