Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a0, author = {V. V. Bitkina}, title = {On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {26--32}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/} }
TY - JOUR AU - V. V. Bitkina TI - On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 26 EP - 32 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/ LA - ru ID - SEMR_2017_14_a0 ER -
V. V. Bitkina. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 26-32. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a0/
[1] A. A. Makhnev, D. V. Paduchikh, “Graphs with strongly regular local subgraphs having eigenvalue 4”, Maltsevskie chteniya, Abstracts (Novosibirsk, 2016), 86
[2] Bitkina V. V., Gutnova A. K., Makhnev A. A., “Automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$”, Sibirean electr. Math. Reports, 13 (2009), 1040–1051
[3] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[4] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[5] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 3 (2010), 439–442 | DOI | MR | Zbl
[6] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl